K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

a) 3^10+3^11=3^10 x(1+3)

                  =3^10 x4

=> 3^10+3^11 chia hết cho 4

29 tháng 10 2015

a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)

vì n chẵn nên đặt n=2k

\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)

vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2

=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16

\(n^3+4n=n^3-4n+8n\)

đặt n=2k

=>\(8\left(k-1\right)k\left(k+1\right)+16k\)

mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16

26 tháng 2 2022

Ta có: n5−n=n(n4−1)=n(n−1)(n+1)(n2+1)

CM n5−n⋮3

Ta thấy n,n+1,n−1 là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho 3

n(n−1)(n+1)⋮3⇔n5−n⋮3(1)

CM n5−n⋮5

+) n≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡1(mod5)⇒n−1≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡2(mod5)⇒n2≡4(mod5)⇒n2+1≡0(mod5)

n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡3(mod5)⇒n2≡9(mod5)⇒n2+1≡0(mod5)

n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡4(mod5)⇒n+1≡0(mod5)

n5−n=n(n+1)(n−1)(n2+1)⋮5

Do đó, n5−n⋮5(2)

CM n5−n⋮16

Vì n lẻ nên đặt n=4k+1;4k+3 Khi đó:[n2=16k2+1+8kn2=16k2+9+24k⇒ n2≡1(mod8)

n2−1⋮8

Mà n lẻ nên n2+1⋮2

Do đó n5−n=n(n2−1)(n2+1)⋮16(3)

Từ (1),(2),(3)⇒n5−n⋮(16.3.5=240) (đpcm)

Chúc bạn học tốt!

3 tháng 1 2016

lớp 6 cứt; lớp 7,8 rồi; tao học lớp 6 mà đã biết đâu

4 tháng 11 2023

Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu 

2 tháng 1 2016

1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)

2 tháng 1 2016

làm các con kia tương tự nhé ^^

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ

Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên 

Khi đó:

$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$

$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)

Do đó $x,y$ cùng chẵn 

Đặt $x=2k, y=2m$ với $k,m$ nguyên 

a. 

$xy=2k.2m=4km\vdots 4$ (đpcm)

b.

$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$

$\Rightarrow k^2+m^2\vdots 4$

Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.

Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên 

Khi đó:

$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)

21 tháng 9 2015

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

21 tháng 9 2015

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4