K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)

\(\Leftrightarrow\frac{4x+6}{10x+4}=\frac{4x+5}{10x+2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{4x+6}{10x+4}=\frac{4x+5}{10x+2}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)

\(\Rightarrow4x+6=\frac{1}{2}\left(10x+4\right)\)

\(\Rightarrow4x+6=5x+2\)

\(\Rightarrow x=6-2=4\)

Vậy x = 4

Ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)

\(\Leftrightarrow\left(2x+3\right)\left(10x+2\right)=\left(4x+5\right)\left(5x+2\right)\)

\(\Leftrightarrow20x^2+4x+30x+6=20x^2+8x+25x+10\)

\(\Leftrightarrow20x^2+34x+6=20x^2+33x+10\)

\(\Leftrightarrow20x^2+34x+6-20x^2-33x-10=0\)

\(\Leftrightarrow x-4=0\)

hay x=4

Vậy: x=4

24 tháng 7 2015

2x+3/5x+2 = 4x+5/10x+2

<=> (2x+3)(10x+2)=(5x+2)(4x+5)

<=>2x(10x+2)+3(10x+2)= 5x(4x+5)+2(4x+5)

<=> 20x^2+4x+20x+6 = 20x^2+25x+9x+10

<=> 20x^2+4x+20x+6 - (20x^2+25x+9x+10)=0 => 20x^2+24x+6-(20x^2+34x+10)=0

                                                                  <=>   -10x-4=0

                                                                 <=>-10x=4

                                                                  <=> x= -4/10

25 tháng 7 2015

2x+3/5x+2=4x+5/10x+2

=> (2x+3)(10x+2)=(5x+2)(4x+5)

=> 20x^2+4x+30x+6=10x^2+25x+8x+10 ( Vì cả hai vế đều có 10x^2 nên ta xóa đi )

=> 34x+6=33x+10

=> 34x-33x=-6+10

=> x=4

 

5 tháng 7 2015

\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\Leftrightarrow\left(2x+3\right)\left(10x+2\right)=\left(4x+5\right)\left(5x+2\right)\Leftrightarrow20x^2+34x+6=20x^2+33x+10\Leftrightarrow x=4\)

5 tháng 7 2016

\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)

=> (2x + 3)(10x + 2) = (5x + 2)(4x + 5)

=> 20x2 + 4x + 30x + 6 = 20x2 + 25x + 8x + 10

=> 34x + 6 = 33x + 10 (bớt 2 vế đi 20x2)

=> x = 4

7 tháng 7 2019

a) 4x - 2x + 3 - 4x.(x - 5) = 7x - 3

--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3

--> 11x = -6

--> x = \(\frac{-6}{11}\)

b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x

--> -3x2 + 15x + 5x - 5 + 3x2 = 4x

--> -3x + 15x + 5x + 3x2 - 4x = 5 

--> 16x = 5

--> x = \(\frac{5}{16}\)

c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3

--> 7x2 - 14x - 5x + 5 = 7x2 + 3 

--> 7x - 14x - 5x - 7x2  = -5 + 3 

--> -19x = -2 

--> x = \(\frac{2}{19}\)

d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7

--> 15x - 3 - x2 + 2x + x2 - 13x = 7

--> 15x - x2 + 2x + x2 - 13x = 3 + 7

--> 4x = 10

--> x = \(\frac{5}{2}\)

e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12

--> 2x2 - 3x - 2x2 + 10x = 12

--> 7x = 12

--> x = \(\frac{12}{7}\)

~ Học tốt ~

4 tháng 7 2019

a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3

=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

=> 18x + 3 = 7x - 3

=> 18x - 7x = -3 - 3

=> 11x = -6

=>  x = -6/11

b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x

=> -3x2 + 15x + 5x - 5 + 3x2 = 4x

=> 20x - 5 = 4x

=> 20x - 4x = 5

=> 16x = 5

=> x = 5/16

\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)

\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)

\(\Leftrightarrow7x^2-7x^2-19x=3-5\)

\(\Leftrightarrow-19x=-2\)

\(\Leftrightarrow x=\frac{2}{19}\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`3x(4x-1) - 2x(6x-3) = 30`

`=> 12x^2 - 3x - 12x^2 + 6x = 30`

`=> 3x = 30`

`=> x = 30 \div 3`

`=> x=10`

Vậy, `x=10`

`b)`

`2x(3-2x) + 2x(2x-1) = 15`

`=> 6x- 4x^2 + 4x^2 - 2x = 15`

`=> 4x = 15`

`=> x = 15/4`

Vậy, `x=15/4`

`c)`

`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`

`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`

`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`

`=> 40x^2 -17x - 1 = 1`

`d)`

`(x+2)(x+2)-(x-3)(x+1)=9`

`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`

`=> 6x + 7 =9`

`=> 6x = 2`

`=> x=2/6 =1/3`

Vậy, `x=1/3`

`e)`

`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`

`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`

`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`

`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`

`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`

`=> 12x +8 = 0`

`=> 12x = -8`

`=> x= -8/12 = -2/3`

Vậy, `x=-2/3`

`g)`

`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`

`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`

`=> -3x + 4 =14`

`=> -3x = 10`

`=> x= - 10/3`

Vậy, `x=-10/3`

16 tháng 6 2023

Hello các bạn còn đó ko?

29 tháng 8 2021

\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)

\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

29 tháng 8 2021

a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)

Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)

b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)

c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

vậy ...

 

d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)

    \(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)