\(\sqrt[3]{\frac{1}{4}+\frac{\sqrt{5}}{8}}-\sqrt[3]{\frac{\sqrt{5}}{8}-\frac{1}{4}}=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
Nhân cả tử và mẫu với biểu thức liên hợp của mẫu (câu a mẫu cuối kì kì)
\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\frac{1}{4}=\sqrt{3}-\frac{3}{4}\)
\(B=-\left(\sqrt{1}+\sqrt{2}-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-...+\sqrt{7}+\sqrt{8}-\sqrt{8}-\sqrt{9}\right)\)
\(B=-\left(\sqrt{1}-\sqrt{9}\right)=2\)
Phân tích mỗi hạng tử theo kiểu như dưới đây
\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)
\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)
Khi đó mọi mẫu đều bằng -1
Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)
Trả lời:
Đặt \(B=\sqrt[3]{\frac{1}{4}+\frac{\sqrt{5}}{8}}-\sqrt[3]{\frac{\sqrt{5}}{8}-\frac{1}{4}}\)
\(4B=4.\sqrt[3]{\frac{1}{4}+\frac{\sqrt{5}}{8}}-4.\sqrt[3]{\frac{\sqrt{5}}{8}-\frac{1}{4}}\)
\(4B=\sqrt[3]{64.\left(\frac{1}{4}+\frac{\sqrt{5}}{8}\right)}-\sqrt[3]{64.\left(\frac{\sqrt{5}}{8}-\frac{1}{4}\right)}\)
\(4B=\sqrt[3]{16+8\sqrt{5}}-\sqrt[3]{5\sqrt{8}-16}\)
\(4B=\sqrt[3]{1+3\sqrt{5}+15+5\sqrt{5}}-\sqrt[3]{-\left(16-5\sqrt{8}\right)}\)
\(4B=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{-\left(1-3\sqrt{5}+15-5\sqrt{5}\right)}\)
\(4B=1+\sqrt{5}-\sqrt[3]{-\left(1-\sqrt{5}\right)^3}\)
\(4B=1+\sqrt{5}-\left[-\left(1-\sqrt{5}\right)\right]\)
\(4B=1+\sqrt{5}+1-\sqrt{5}\)
\(4B=2\)
\(B=\frac{1}{2}\)