K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

a, Nghe đề sai sai là lạ

b, Ta có : \(B=\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)

\(=\sqrt{4}-\sqrt{6+2\sqrt{5}}+2\sqrt{5}=2+2\sqrt{5}-\sqrt{5+2\sqrt{5}+1}\)

\(=2+2\sqrt{5}-\sqrt{5}-1=\sqrt{5}+1\)

c, Ta có : \(C=\left(\sqrt{14}-\sqrt{10}\right)\left(\sqrt{6}+\sqrt{35}\right)\)

\(=\sqrt{84}-\sqrt{60}+\sqrt{490}-\sqrt{350}=2\sqrt{21}-2\sqrt{15}+7\sqrt{10}-5\sqrt{14}\)

d, Ta có : \(D=\sqrt{11-4\sqrt{7}}-\sqrt{2}\sqrt{8+3\sqrt{7}}\)

\(=\sqrt{4-4\sqrt{7}+7}-\sqrt{9+6\sqrt{7}+7}\)

\(=\sqrt{7}-2-3-\sqrt{7}=-5\)

30 tháng 5 2023

\(c,\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)

\(=\sqrt{4+5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{29}\)

b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)

\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)

\(=4\left(7+3\sqrt{5}\right)\)

\(=28+12\sqrt{5}\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

a. 

$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$

$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$

$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$

$=2\sqrt{5}-5\sqrt{10}$

$\Rightarrow A=\sqrt{10}-5\sqrt{5}$

b.

$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$

$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$

$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$

$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$

$\Rightarrow B=28+12\sqrt{5}$

c.

$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$

$=(7-5)(6-\sqrt{35})$

$=2(6-\sqrt{35})=12-2\sqrt{35}$

30 tháng 9 2023

\(\sqrt{\left(2\sqrt{2-1}\right)^2}-\sqrt{17+12\sqrt{2}}\\ =\left|2\sqrt{2}-1\right|-\sqrt{9+2\cdot3\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}\\ =2\sqrt{2}-1-\sqrt{\left(3+2\sqrt{2}\right)^2}\\=2\sqrt{2}-1-\left(3+2\sqrt{2}\right)\\ =2\sqrt{2}-1-3-2\sqrt{2}\\ =-4\)

__

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\\ =\left|2-\sqrt{5}\right|+\sqrt{9-2\cdot3\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\\ =2-\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}\\ =2-\sqrt{5}+3-\sqrt{5}\\ =5-2\sqrt{5}\)

__

\(\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{19+6\sqrt{2}}\\ =\left|4-3\sqrt{2}\right|-\sqrt{18+2\cdot3\cdot\sqrt{2}+1}\\ =4-3\sqrt{2}-\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =4-3\sqrt{2}-3\sqrt{2}-1\\ =3-6\sqrt{2}\)

15 tháng 5 2021

`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`

`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`

`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`

`=`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`

`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`

`=2(\sqrt5-1)sqrt{6+2\sqrt5}`

`=2(\sqrt5-1)(\sqrt5+1)`

`=2(5-1)`

`=8`

15 tháng 5 2021

`2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{6-2\sqrt5}}`

`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt{(\sqrt5-1)^2}}`

`=2(\sqrt{10}-\sqrt2)\sqrt{4+\sqrt5-1}`

`=2(\sqrt{10}-\sqrt2)\sqrt{3+\sqrt5)`

`=2\sqrt2(\sqrt5-1)\sqrt{3+\sqrt5}`

`=2(\sqrt5-1)sqrt{6+2\sqrt5}`

`=2(\sqrt5-1)(\sqrt5+1)`

`=2(5-1)`

`=8`

`(4\sqrt2+\sqrt{30})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`

`=\sqrt2(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{4-\sqrt{15}}`

`=(4+\sqrt{15})(\sqrt5-\sqrt3)\sqrt{8-2\sqrt{15}}`

`=(4+\sqrt{15})(\sqrt5-\sqrt3)(\sqrt5-\sqrt3)`

`=(4+\sqrt{15})(8-2\sqrt{15})`

`=2(4+\sqrt{15})(4-\sqrt{15})`

`=2(16-15)`

`=2`

1 tháng 7 2016

câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :

\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)      

\(=3-\sqrt{6}+2\sqrt{6}-3\)   ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )

\(=\sqrt{6}\)

 

18 tháng 6 2017

sai ngay từ đầu limdim

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:

a. $=|3+\sqrt{2}|-|3-2\sqrt{2}|=(3+\sqrt{2})-(3-2\sqrt{2})$

$=3\sqrt{2}$

b. $=|\sqrt{7}-2\sqrt{2}|-|\sqrt{7}+2\sqrt{2}|$

$=(2\sqrt{2}-\sqrt{7})-(\sqrt{7}+2\sqrt{2})$

$=-2\sqrt{7}$

c.

$=|3+\sqrt{5}|+|3-\sqrt{5}|=(3+\sqrt{5})+(3-\sqrt{5})=6$

d.

$=|2-\sqrt{3}|-|2+\sqrt{3}|=(2-\sqrt{3})-(2+\sqrt{3})=-2\sqrt{3}$