\(Tìm\)\(x\)\(biết\)
\(x^2+2x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
`x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>(x-2)*(-3)=0`
`<=>x-2=0`
`<=>x=2`
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)
=>2x=-4
hay x=-2
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
x2 + 2x = 0
<=> x( x + 2 ) = 0
<=> x = 0 hoặc x + 2 = 0
<=> x = 0 hoặc x = -2
Vậy S = { 0 ; -2 }
Bg
Ta có: x2 + 2x = 0 (x \(\inℤ\))
=> xx + 2x = 0
=> x(x + 2) = 0
=> \(\hept{\begin{cases}x=0\\x+2=0\rightarrow x=0-2=-2\end{cases}}\)
Vậy x = 0 hay x = -2