Làm thế nào nhiêu lần các chữ số 0 xuất hiện với số 1-1000 ?
đúng mình cho 1 like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chữ số 2 xuất hiện 3 lần.
Coi chữ số đc lập nên từ 6 chữ số tập \(A=\left\{1,2,2,2,3,4\right\}\)
Gọi số cần lập là \(\overline{abcdef}\in A\)
Chọn a có 6 cách chọn.
Xếp 5 số của \(A\backslash\left\{a\right\}\) vào 5 vị trí còn lại có 5! cách xếp.
Mà chữ số 2 lặp lại 3 lần\(\Rightarrow\) có 3! cách xếp.
Vậy số các số cần lập:
\(\dfrac{6\cdot5!}{3!}=120\left(số\right)\)
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)