GPT với ẩn số là x:
\(\frac{a}{1-bx}=\frac{b}{1-ax}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(\left(x^2+ax+b\right)=0\left(1\right)\) có \(\Delta_1=a^2-4b\)
Xét phương trình \(\left(x^2+bx+a\right)=0\left(2\right)\) có \(\Delta_2=b^2-4a\)
\(\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)\)
mà \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow2\left(a+b\right)=ab\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> Có ít nhất 1 trong 2 pt có nghiệm
=> đpcm
Điều kiện a; b ; c khác 0
\(\Rightarrow x.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=2.\left(\frac{bc+ac+ab}{abc}\right)+\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\)
\(\Rightarrow x.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=\frac{2bc+2ac+2ab}{abc}+\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\)
\(\Rightarrow x.\left(\frac{a+b+c}{abc}\right)=\frac{\left(a+b+c\right)^2}{abc}\)
\(\Rightarrow x.\left(a+b+c\right)=\left(a+b+c\right)^2\)
Nếu a+ b+ c khác 0 => phương trình có nghiệm duy nhất là \(\Rightarrow x=a+b+c\)
Nếu a+ b + c = 0 => x. 0 = 0 => pt có vô số nghiêm
\(Q=\frac{1+\text{ax}}{1-\text{ax}}\sqrt{\frac{1-bx}{1+bx}}\)
Ta có: \(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow\text{ax}=\sqrt{\frac{2a-b}{b}}\Rightarrow1+\text{ax}=1+\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}}\)
\(1-\text{ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)
\(\Rightarrow\frac{1+\text{ax}}{1-\text{ax}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}-\sqrt{2a-b}}=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2b-2a}\left(1\right)\)
\(bx=\frac{b}{a}\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}\left(2a-b\right)}{a}\Rightarrow\hept{\begin{cases}1-bx=\frac{a-\sqrt{b\left(2a-b\right)}}{a}\\1+bx=\frac{a+\sqrt{b\left(2a-b\right)}}{a}\end{cases}}\)
\(\Rightarrow\frac{1-bx}{1+bx}=\frac{a-\sqrt{b\left(2a-b\right)}}{a+\sqrt{b\left(2a-b\right)}}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{a^2-2ab+b^2}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{\left(a-b\right)^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow Q=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2\left(b-a\right)}.\frac{a-\sqrt{b\left(2a-b\right)}}{a-b}=\frac{\text{[}2a+2\sqrt{b\left(2a-b\right)}\text{]}\left(a-b\sqrt{2a-b}\right)}{2\left(a-b\right)^2}\)
\(\Rightarrow\frac{2\left[a^2-b\left(2a-b\right)\right]}{2\left(a-b\right)^2}=\frac{2\left(a^2-2ab+b^2\right)}{a\left(a-b\right)^2}=1\)
1. Ta có : \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}=\lim\limits_{x\rightarrow0}\left(\frac{\sin ax}{\sin bx}.\frac{\cos ax}{\cos bx}\right)=\lim\limits_{x\rightarrow0}\frac{\sin ax}{\sin bx}=\lim\limits_{x\rightarrow0}\left(\frac{\frac{\sin ax}{ax}}{\frac{\sin bx}{bx}}.\frac{ax}{bx}\right)=\frac{a}{b}\frac{\lim\limits_{x\rightarrow0}\frac{\sin ax}{ax}}{\lim\limits_{x\rightarrow0}\frac{\sin bx}{bx}}=\frac{a}{b}\frac{\lim\limits_{y\rightarrow0}\frac{\sin y}{y}}{\lim\limits_{z\rightarrow0}\frac{\sin z}{z}}=\frac{a}{b}\)
2. Ta có : \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\sin^2\frac{ax}{2}}{x^2}=\lim\limits_{x\rightarrow0}\left[\left(\frac{\sin\frac{ax}{2}.\sin\frac{ax}{2}}{\frac{ax}{2}.\frac{ax}{2}}\right).\frac{a^2}{2}\right]\)
\(=\frac{a^2}{2}\left(\lim\limits_{y\rightarrow0}\frac{\sin y}{y}\right)^2=\frac{a^2}{2}\)
Đẳng thức tương đương: \(a-a^2x=b-b^2x\Leftrightarrow a-b=x\left(a^2-b^2\right)\)
+) TH1: a=b hoặc a=-b thì 0=0.x, vậy phương trình có vô số nghiệm
+) TH2: \(a\ne b\) thì \(x=\frac{a-b}{\left(a-b\right)\left(a+b\right)}=\frac{1}{a+b}\)
ĐK: \(x\ne\frac{1}{a};\frac{1}{b}\)
pt <=> \(a-a^2x=b-b^2x\Leftrightarrow\left(a^2-b^2\right)x=a-b\)(1)
TH1: \(a^2-b^2=0\Leftrightarrow\orbr{\begin{cases}a=b\\a=-b\end{cases}}\)
Với a = b; Ta có: (1) trở thành: 0x = 0 => phương trình có vô số nghiệm
Với a = - b; Ta có: (1) trở thành: 0x = 2a \(\ne\)0 => phương trình vô nghiệm
TH2: \(\hept{\begin{cases}a\ne b\\a\ne-b\end{cases}}\)
Ta có: pt (1) <=> \(x=\frac{1}{a+b}\)
Vậy:....