Cho a,b,c,d>0 thỏa mãn a>c+d,b>c+d. CMR:ab>ad+bc
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PH
1
AH
Akai Haruma
Giáo viên
23 tháng 8 2019
Lời giải:
Nếu $a\geq b$
Từ $b>c+d$
$\Rightarrow ba> ac+ad$. Mà $ac\geq bc$ do $a\geq b$
$\Rightarrow ba>bc+ad$ (1)
Nếu $a< b$
Từ $a>c+d$
$\Rightarrow ab>bc+bd$. Mà $bd> ad$ do $a< b$
$\Rightarrow ab>bc+ad$ (2)
Từ (1) và (2) ta có đpcm.
10 tháng 8 2018
\(\rightarrow\frac{a}{b}>\frac{a+c}{b+d}\)
\(\Rightarrow a.\left(b+d\right)>b.\left(a+c\right)\)
\(\Rightarrow ab+ad>ab+bc\)
\(\Rightarrow ad>bc\Leftrightarrow\frac{a}{b}>\frac{c}{d}\)
\(\rightarrow\frac{a+c}{b+d}>\frac{c}{d}\)
\(\Rightarrow\left(a+c\right).d>\left(b+c\right).d\)
\(\Rightarrow ad+cd>bc+cd\)
\(\Rightarrow\frac{a}{d}>\frac{b}{c}\Leftrightarrow\frac{a}{b}>\frac{c}{d}\)
A
0
Ta có: \(\hept{\begin{cases}a>c+d\\b>c+d\end{cases}\Leftrightarrow\hept{\begin{cases}a-c>d\\b-d>c\end{cases}\Rightarrow}\left(a-c\right)\left(b-d\right)>cd\Leftrightarrow ab-bc-ad+cd>cd}\Leftrightarrow ab>ad+bc\)