Giải phương trình
3+√x =5
√x²-6x+9=3
Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
a, 3x - 2x < 6 <=> x < 6
b, đk : x khác -1 ; 3
=> x^2 - 3x = x^2 - x - 2
<=> -2x = -2 <=> x = 1 (tm)
$\begin{cases}3(x-1)+2(y-3)=-5\\(x+y-1)^2=(x+y)^2\\\end{cases}$
`<=>` $\begin{cases}3x-3+2y-6=-5\\(x+y-x-y+1)(x+y+x+y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\1.(2x+2y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\2x+2y=1\\\end{cases}$
`<=>` $\begin{cases}3x-2x=4-1=3\\2y=1-2x\\\end{cases}$
`<=>` $\begin{cases}x=3\\y=\dfrac{1-2x}{2}=-\dfrac52\\\end{cases}$
Vậy HPT có nghiệm `x,y=(3,-5/2)`
\(x^2+4x+5=2\sqrt{2x+3}\)
\(ĐK:x\ge-\dfrac{3}{2}\)
\(pt\Leftrightarrow(2x+3-2\sqrt{2x+3}+1)+x^2+2x+1=0\)
\(\Leftrightarrow\left(\sqrt{2x+3}-1\right)^2=-\left(x+1\right)^2\)
Vì \(\left(\sqrt{2x+3}-1\right)^2\ge0;-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}(\sqrt{2x+3}-1)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}=1\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)}\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy, pt có nghiệm duy nhất là x=-1
a: \(B=\dfrac{x^2+5x+5x+25}{x\left(x+5\right)}=\dfrac{x+5}{x}\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3>3\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m-3< -3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(m+6\right)x^2-3\left(m+3\right)x+2m-6>0\\3\left(m+6\right)x^2-3\left(m+3\right)x+2m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+6>0\\\Delta=9\left(m+3\right)^2-12\left(m+6\right)\left(2m-6\right)< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m+6< 0\\9\left(m+3\right)^2-24m\left(m+6\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>-6\\-15m^2-18m+513< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m< -6\\-15m^2-90m+81< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow...\) (kết quả xấu quá)
a, \(3+\sqrt{x}=5\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
b, \(\sqrt{x}^2-6x+9=3\Leftrightarrow x-6x+6=0\Leftrightarrow-5x+6=0\)
\(\Leftrightarrow-5x=-6\Leftrightarrow x=\frac{6}{5}\)
a/ \(3+\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=5-3=2\)
\(\Rightarrow x=2^2=4\)
b/ \(x^2-6x+9=3\)
\(\Leftrightarrow x^2-2\cdot x\cdot3+3^{^{ }2}=3\)
\(\Leftrightarrow\left(x-3\right)^2=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{3}\\x-3=-\sqrt{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)