K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2020

Do \(\left\{{}\begin{matrix}a;b;c\ge1\\a+b+c=4>3\end{matrix}\right.\) \(\Rightarrow abc>1\)

\(\Rightarrow P=log_2abc\) đồng biến theo \(abc\Rightarrow P_{min}\) khi \(Q=abc\) đạt min

Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x+y+z=1\end{matrix}\right.\)

\(Q=\left(x+1\right)\left(y+1\right)\left(z+1\right)=1+xyz+x+y+z+xy+yz+zx\)

\(Q=2+xyz+xy+yz+zx\ge2+xy+yz+zx\ge2\)

\(\Rightarrow Q_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(1;1;2\right)\) và hoán vị

\(\Rightarrow P_{min}=log_22=1\) khi \(\left(a;b;c\right)=\left(1;1;2\right)\) và hoán vị

1 tháng 2 2022

đề sai

1 tháng 2 2022

sai là sai thế nào

2 tháng 2 2022

Ta đặt:

     \(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)

        \(\Rightarrow x+y+z=3\) và  \(x,y,z\ge0\) (*)

Biểu thứ P trở thành:

     \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Từ (*) dễ thấy:

     \(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)

Do đó:

     \(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)

Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)

2 tháng 10 2021

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3

NV
1 tháng 2 2022

\(P=1\sqrt{a-1}+1\sqrt{b-2}+1\sqrt{c-3}\le\dfrac{1}{2}\left(1+a-1+1+b-2+1+c-3\right)=3\)

\(P_{max}=3\) khi \(\left(a;b;c\right)=\left(2;3;4\right)\)

\(P^2=a+b+c-6+2\left(\sqrt{\left(a-1\right)\left(b-2\right)}+\sqrt{\left(a-1\right)\left(c-3\right)}+\sqrt{\left(b-2\right)\left(c-3\right)}\right)\)

\(P^2\ge a+b+c-6=3\)

\(P\ge\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(\left(a;b;c\right)=\left(1;2;6\right);\left(1;5;3\right);\left(4;2;3\right)\)

1 tháng 2 2022

thầy giải thích thêm phần dấu bằng xảy ra của phần tìm giá trị nhỏ nhất được không ạ