Giúp em khoanh câu trắc nghiệm và giải thích lời giải cho em vì mai em sắp thi lớp 10 rồi :((
Một hình quạt tròn OAB của đường tròn (O;R) có diện tích \(\frac{7\pi R^2}{24}.\) Tính số đo AB.
A,150 độ
B,90 độ
C,105 độ
D, 120 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Tứ giác ABCD là hình thoi .
=> \(\left\{{}\begin{matrix}AH=HC=\frac{1}{2}AC=\frac{1}{2}6=3\left(cm\right)\\BH=HD=\frac{1}{2}BD=\frac{1}{2}8=4\left(cm\right)\end{matrix}\right.\)
- Áp dụng định lý pi ta go vào tam giác AHB vuông tại H .
=> \(AB=\sqrt{3^2+4^2}=5\left(cm\right)\)
=> C = 5.4 = 20 ( cm )
=> Đáp án C .
giống tui nhưng tui thi xong lâu gồi chúc bạn thi tốt hen
Ta có : \(\left|3x-1\right|=\left|2x+11\right|\)
=> \(\left[{}\begin{matrix}3x-1=2x+11\\3x-1=-2x-11\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\)
=> P = 12.(-2) = -24
Vậy đáp án B .
Ta có : \(2n+8⋮n-2\)
=> \(2n-4+12⋮n-2\)
Ta thấy : \(2\left(n-2\right)⋮n-2\)
=> \(12⋮n-2\)
=> \(n-2\inƯ_{\left(12\right)}\)
=> \(n-2=\left\{1,-1,2,-2,3,-3,4,-4,6,-6,12,-12\right\}\)
=> \(n=\left\{3,1,4,0,5,-1,6,-2,8,-4,14,-10\right\}\)
=> Tổng là : 24
Vậy đáp án C.
Ta có : 4x - y + 1 = 0
=> \(y=4x+1\)
Ta có : y = ax + b vuông góc với y = 4x + 1
=> \(a.4=-1\)
=> \(a=-\frac{1}{4}\)
- Thay a, x, y vào hàm số ta được :
\(-1=4.-\frac{1}{4}+b\)
=> b = 0
=> a.b = -1/4 . 0 = 0
=> Đáp án B .
Ta có phương trình dạng : \(ax^2+bx+c=0\)
- Với PT ( I ) : \(\left\{{}\begin{matrix}a=1\\b=0\\c=-9\end{matrix}\right.\)
- Với PT ( II ) : a = 2 .
Nên để hai phương trình tương đương a PT ( I ) = 2 .
=> PT ( I ) : \(2x^2-18=0\)
=> Với PT ( I ) : \(\left\{{}\begin{matrix}a=2\\b=0\\c=-18\end{matrix}\right.\)
- Với PT ( II ) : \(\left\{{}\begin{matrix}a=2\\b=m-5\\c=-3\left(m+1\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m-5=0\\-3\left(m+1\right)=-18\end{matrix}\right.\)
=> m = 5 .
Vậy đáp án B .
Bạn tự vẽ hình nha
a)Ta có góc BEH =90 độ (góc nội tiếp chắn nửa đường tròn)
và góc FHC = 90 độ (góc nội tiếp chắn nửa đường tròn)
Xét tứ giác AFHE , ta có:
góc EAF =90 độ (tam giác ABC vuông tại A)
góc AEH =90 độ (cmt)
góc AFH=90 độ (cmt)
=> tứ giác AFHE là hình chữ nhật (tứ giác có 3 góc vuông)
b)Gọi I là giao điểm của AH và EF
Ta có: AH=EF (hcn AFHE) (1)
mà 2 đường chéo AH và EF cắt nhau tại I (vẽ thêm)
=>I là trung điểm của AH và EF (2)
từ (1) và (2)=> IE=IH=IA=IF
Ta có: góc IHF =góc ACH (phụ với góc HAC)
mà góc IHF = góc IFH (tam giác IHF cân tại I (IH=IF) )
=>góc ACH = góc IFH (cùng = góc IHF)
mà góc IFH= góc AEF (2 góc so le trong của AE song song HF(cùng vuông góc AC))
=>góc AEF =góc ACH=>tứ giác BEFC nội tiếp đường tròn
c)Gọi J là tâm của nửa đường tròn đường kính BH
và K là tâm của nửa đường tròn đường kính HC
Ta có: tam giác KFC cân tại K (KF=KC)
=>góc KFC = góc KCF mà góc KCF=góc IFH (cmt)
=>góc KFC =góc IFH (cùng =góc KCF)
mà góc KFC + góc HFK =90 độ (góc HFC =90 độ)
=>góc IFH + góc HFK =90 độ => góc IFK =90 độ
=>EF là tiếp tuyến của nửa (K) (I thuộc EF) (3)
Ta lại có: tam giác JEH cân tại J (JE=JH)
=> góc JEH =góc JHE
mà góc JHE = góc HCF ( 2 góc so le trong của HE song song CA ( cùng vuông góc AB) )
và góc HCF = góc AEF (cmt)
=>góc JEH= góc AEF
mà góc AEF + góc HEF = 90 độ (góc HEA = 90 độ)
=>góc JEH + góc HEF =90 độ => góc JEF = 90 độ
=>EF là tiếp tuyến của nửa (J) (4)
Từ (3) và (4) => EF là tiếp tuyến chung 2 nửa dường tròn dường kính BH và HC
ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(Pt\Leftrightarrow2\sqrt{2x+1}=15+3\sqrt{2x+1}\)
\(\Leftrightarrow-\sqrt{2x+1}=15\)
Vế phải dương, vế trái luôn ko dương nên pt vô nghiệm
Ta có : \(S=\frac{\pi R^2n}{360}=\frac{7\pi R^2}{24}\)
=> \(\frac{n}{360}=\frac{7}{24}\)
=> \(n=105^o\)
Vậy đáp án C.