K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2020

\(a=\sqrt{25x^2-10x+1+16}=\sqrt{\left(5x-1\right)^2+16}\ge\sqrt{16}=4\)

\(a_{min}=4\) khi \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

\(b=\sqrt{x^2-10x+25+5}=\sqrt{\left(x-5\right)^2+5}\ge\sqrt{5}\)

\(b_{min}=\sqrt{5}\) khi \(x=5\)

\(c=\sqrt{-16x^2-8x-1+4}=\sqrt{4-\left(4x+1\right)^2}\le\sqrt{4}=2\)

\(c_{max}=2\) khi \(x=-\frac{1}{4}\)

19 tháng 8 2020

a) \(A=x^2-10x+5\)

\(A=x^2-10x+25-20\)

\(A=\left(x-5\right)^2-20\ge-20\)

Min A = -20 \(\Leftrightarrow x=5\)

b) \(B=3x^2-6x+11\)

\(B=3\left(x^2-2x+1\right)+8\)

\(B=3\left(x-1\right)^2+8\ge8\)

Min B = 8\(\Leftrightarrow x=1\)

19 tháng 8 2020

a) \(A=x^2-10x+5=\left(x^2-10x+25\right)-20\)

\(=\left(x-5\right)^2-20\ge-20\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-5\right)^2=0\Rightarrow x=5\)

Vậy \(Min_A=-20\Leftrightarrow x=5\)

b) \(B=3x^2-6x+11=3\left(x^2-2x+1\right)+8\)

\(=3\left(x-1\right)^2+8\ge8\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min_B=8\Leftrightarrow x=1\)

c) \(C=8x^2+10x-30=8\left(x^2-\frac{5}{4}x+\frac{25}{64}\right)-\frac{265}{8}\)

\(=8\left(x-\frac{5}{8}\right)^2-\frac{265}{8}\ge-\frac{265}{8}\)

Dấu "=" xảy ra khi: \(\left(x-\frac{5}{8}\right)^2=0\Rightarrow x=\frac{5}{8}\)

Vậy \(Min_C=-\frac{265}{8}\Leftrightarrow x=\frac{5}{8}\)

6 tháng 11 2016

chắc gõ dấu + nhưng quên ấn Shift thành dấu = r`

\(\sqrt{4x^2+4x+1}+\sqrt{25x^2+10x+1}\)

\(=\sqrt{\left(2x+1\right)^2}+\sqrt{\left(5x+1\right)^2}\)

\(=\left|2x+1\right|+\left|5x+1\right|\ge\frac{3}{5}\)

Dấu = khi \(x=-\frac{1}{5}\)

6 tháng 11 2016

vào đây xem câu TL bạn nhé

https://www.youtube.com/watch?v=fvGaHwKrbUc

27 tháng 7 2021

1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTNN biểu thức trên là 2 khi x = 1/2 

2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)

Dấu ''='' xảy ra khi x = 5 

Vậy GTLN biểu thức trên là -5 khi x = 5

3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xayr ra khi x = 1/2 

Vậy GTNN biểu thức là 3/4 khi x = 1/2 

4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi x = -1/5

Vậy GTNN biểu thức trên là -1 khi x = -1/5

6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)

\(=-\left(x-4\right)^2+21\le21\)

Dấu ''='' xảy ra khi x = 4

Vậy GTLN biểu thức trên là 21 khi x = 4

27 tháng 7 2021

Trả lời:

1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2

Vậy GTNN của bt = 2 khi x = 1/2

2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)

\(=-\left(x-5\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5

Vậy GTLN của bt = - 5 khi x = 5

3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5 

Vậy GTNN của bt = - 1 khi x = - 1/5

4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTNN của bt = 3/4 khi x = 1/2

5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)

\(=-\left(x-4\right)^2+21\le21\forall x\)

Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4

Vậy GTLN của bt = 21 khi x = 4

9 tháng 9 2019

\(A=x^2-3x+1=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)

Vậy GTNN của A là \(\frac{-5}{4}\)\(\Leftrightarrow x=\frac{3}{2}\)

9 tháng 9 2019

\(C=10x-x^2+2=-\left(x^2-10x-2\right)\)

\(=-\left(x^2-10x+25-27\right)=-\left[\left(x-5\right)^2-27\right]\)

\(=-\left(x-5\right)^2+27\le27\)

Vậy \(C_{max}=27\Leftrightarrow x=5\)

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

2 tháng 10 2016

b/ N = \(\frac{\sqrt{x-25}}{10x}\) = \(\frac{1}{10}\sqrt{\frac{x-25}{x^2}}=\frac{1}{10}\sqrt{\frac{1}{x}-\frac{25}{x^2}}\)

Đặt \(\frac{1}{x}=a\)thì ta có

10N = \(\sqrt{a-25a^2}\) = \(1\sqrt{\left(-25a^2+\frac{2×5a}{2×5}-\frac{1}{100}\right)+\frac{1}{100}}\)

\(\sqrt{\frac{1}{100}-\left(5a-\frac{1}{10}\right)^2}\)

Đạt cực đại là \(\frac{1}{10}\)khi a = \(\frac{1}{50}\)hay x = 50

Vậy N đạt GTLN là \(\frac{1}{100}\)khi x = 50. Hết nợ bạn rồi nhé

1 tháng 10 2016

Máy hết pin rồi. Nên gợi ý nhá. Dùng hằng đẳng thức là ra hết

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$