K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

\(x^2+6=4\sqrt{\left(x+1\right)\left(x^2-3x+3\right)}\)

\(x^4+12x^2+36=16\left(x+1\right)\left(x^2-3x+3\right)\)

\(x^4+12x^2+36=16x^3-32x^2+48\)

\(x^4+12x^2+36-16x^3+32x^2-48=0\)

\(x^4-16x^3+44x^2-12=0\)

19 tháng 7 2020

ĐK \(x\ge-1\)

Tiếp đoạn bạn Alan walker

\(x^4-16x^3+44x^2-12=0\)

<=> \(\left(x^2-12x-6\right)\left(x^2-4x+2\right)=0\)

<=> \(\orbr{\begin{cases}x^2-12x-6=0\\x^2-4x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=6\pm\sqrt{42}\\x=2\pm\sqrt{2}\end{cases}}\)(tm ĐKXĐ)

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

16 tháng 10 2016

sao đề nhìn bá vậy bạn ...

16 tháng 10 2016

bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi

14 tháng 10 2019

Câu hỏi của Phương Boice - Toán lớp 8 - Học toán với OnlineMath

26 tháng 8 2016

Đặt \(\sqrt{x^2-x+1}=a\left(ĐK:a>0\right)\)

\(pt\Leftrightarrow\frac{\left(x^6+3x^4a\right)\left(4-a^2\right)}{4\left(2+a\right)a^2}=a\left(2-a\right)\)

\(\Leftrightarrow\left(x^6+3x^4a\right)\left(4-a^2\right)=4a^3\left(4-a^2\right)\)

\(\Leftrightarrow\left(4-a^2\right)\left(x^6+3x^4a-4a^3\right)=0\)

TH1: \(4-a^2=0\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=2\left(n\right)\end{cases}}\)

Với a = 2 , \(\sqrt{x^2-x+1}=2\Rightarrow x^2-x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}+1}{2}\\x=\frac{-\sqrt{13}+1}{2}\end{cases}}\)

TH2: \(x^6+3x^4a-4a^3=0\Rightarrow x^6-x^4a+4x^4a-4x^2a^2+4x^2a^2-4a^3=0\)

\(\Leftrightarrow\left(x^2-a\right)\left(x^4+4x^2a+4a^2\right)=0\Leftrightarrow\left(x^2-a\right)\left(x^2+2a\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=a\\x^2=-2a\left(l\right)\end{cases}}\)

Với \(x^2=a\Rightarrow x^2=\sqrt{x^2-x+1}\)

Đến đây bình phương và tìm ra nghiệm.

26 tháng 8 2016

Khó ghê, có quản lí mới giải được

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok