K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

A B D C I

Đặt BC = a , AC = b , AB = c . Ta có :

\(BD=\frac{a+c-d}{2}\)

\(DC=\frac{a+b-c}{2}\)

Do đó , ta giả sử \(\left(b\ge c\right)\)

\(BD.DC=\frac{a+c-b}{2}.\frac{a+b-c}{2}\)

                 \(=\frac{a-\left(b-c\right)}{2}.\frac{a+\left(b-c\right)}{2}\)

                 \(=\frac{a^2-\left(b-c\right)^2}{4}\)

                 \(=\frac{a^2-b^2+2bc-c^2}{4}\)

                 \(=\frac{a^2-\left(b^2+c^2\right)+2bc}{4}\)

Do \(a^2=b^2+c^2\)nên   \(BD.DC=\frac{2bc}{3}=\frac{bc}{2}=S_{ABC}\)

26 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi E và F lần lượt là tiếp điểm của đường tròn với AD và AC

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AE = AF

BE = BD

CD = CF

BD = BC + CD

BE = AB – AE

Suy ra: BD + BE = AB + BC – (AE + CD)

= AB + BC – (AE + CE)

= AB + BC – AC

Suy ra: BD = (AB + BC - AC)/2

Lại có: CD = BC – BD

CF = AC = AF

Suy ra: CD + CF = BC + AC – (BD + AF)

= BC + AC – (BE + AE)

= BC + AC – BA

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy S A B C  = BD.DC.

20 tháng 6 2022

sao k chụp ht bài luôn

 

NV
10 tháng 1 2022

Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)

Gọi các tiếp điểm với AB và AC là E và F

Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:

\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)

Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)

\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)

\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)

Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)

\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)

\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)

NV
10 tháng 1 2022

undefined

14 tháng 1 2019

A B C N D F I K O

a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I

=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)

Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)

+) ND cùng vuông góc với IK và BC 

=> IK//BC

=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)

Từ (1), (2), (3)

=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)

+) Xét 2 tam giác vuông INO và ODB có:

\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)

=> \(\Delta INO~\Delta ODB\)

=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)

Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)

(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)

b) IK//BC. Theo định lí Thaslet ta có:

\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)

(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)

13 tháng 11 2016

Gọi E, F lần lượt là tiếp điểm của đường tròn đã cho với các cạnh AB, AC. Đặt AE = AF = x. Ta có BD = BE, CF = CD. Từ đó ta có:

AB.AC = ( x + BD )( x + CD ) = x2 + ( BD + DC )x + BD.CD (1)

Do ABC là tam giác vuông nên theo định lý Pytago, ta có:

AB2 + AC2 = BC2 trở thành ( x + BD )2 + ( x + CD )2 = ( DB + DC )2  <=> ( x2 + ( BD + DC )x) = BD.DC <=> ( x + BD )( x + CD ) = 2BD.CD (2).

Từ (1), (2) suy ra đpcm.

25 tháng 1 2017

cho 1 hinh duoc tao bang nua hinh tron co  duong tron 2 dm va 1 hinh tam giac co duong cao 3dm,day2dm

lam on hay giup minh nhe! co giao minh sap kiem tra rui. cam on

17 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

AD ⊥ DB; AE ⊥ CE

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: MA // BD ⇒ MA ⊥ DE

Trong tam giác vuông ABC ta có : MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.