K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 7 2020

\(a^2+b^2=4+ab\le4+\frac{a^2+b^2}{2}\)

\(\Rightarrow\frac{a^2+b^2}{2}\le4\Rightarrow a^2+b^2\le8\)

Dấu "=" xảy ra khi \(a=b=2\)

\(a^2+b^2=4+\frac{1}{2}\left(a+b\right)^2-\frac{1}{2}\left(a^2+b^2\right)\ge4-\frac{1}{2}\left(a^2+b^2\right)\)

\(\Rightarrow\frac{3}{2}\left(a^2+b^2\right)\ge4\Rightarrow a^2+b^2\ge\frac{8}{3}\)

Dấu "=" xảy ra khi \(a=-b=\frac{2\sqrt{3}}{3}\) và hoán vị

20 tháng 3 2023

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

mk mới hok lớp 7 ak ko làm được hhi!!!!!!!!!!!!!!!

678679780

NV
22 tháng 2 2021

\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)

\(\Rightarrow a^2+b^2\le8\)

\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)

22 tháng 3 2021

1) a2 - ab + b2 ≥ 0

<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0

<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b = 0

2) a2 - ab + b2 ≥ 1/4( a + b )2

<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2

<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0

<=> 3a2 - 6ab + 3b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b 

23 tháng 5 2017

\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

23 tháng 5 2017

cauchy - schwarz là bđt Cauchy à bạn

1 tháng 4 2017

c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)