x2 + \(^{\frac{25x^2}{\left(x+5\right)^2}}\)=11
giải giúp e với ạ e sắp thi chuyển cấp r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x}{2021}\)
\(\Leftrightarrow\frac{x+2}{2019}+1+\frac{x+3}{2018}+1=\frac{x+4}{2017}+1+\frac{x}{2021}+1\)
\(\Leftrightarrow\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2021}\)
\(\Leftrightarrow x+2021=0\)
\(\Leftrightarrow x=-2021\)
Câu 2
\((1) MnO_2 + 4HCl \to MnCl_2 + Cl_2 + 2H_2O\\ (2) Cl_2 + H_2 \xrightarrow{as} 2HCl\\ (3) 3Cl_2 + 2Fe \xrightarrow{t^o} 2FeCl_3\\ (4) 2FeCl_3 + Fe \to 3FeCl_2\\ (5) 2NaOH + Cl_2 \to NaCl + NaClO + H_2O\)
\((1) 4Al + 3O_2 \xrightarrow{t^o} 2Al_2O_3\\ (2) 2Fe + 3Cl_2 \xrightarrow{t^o} 2FeCl_3\\ (3) C + O_2 \xrightarrow{t^o} CO_2\\ (4) 2KMnO_4 \xrightarrow{t^o} K_2MnO_4 + MnO_2 + O_2\\ (5) 4P + 5O_2 \xrightarrow{t^o} 2P_2O_5\\ (6) 2KClO_3 \xrightarrow{t^o} 2KCl + 3O_2\\ (7) Fe + H_2SO_4 \to FeSO_4 + H_2\\ (8) Cu + 2H_2SO_4 \to CuSO_4 + SO_2 + 2H_2O\\ (9) 2Fe + 6H_2SO_4 \to Fe_2(SO_4)_3 + 3SO_2 + 6H_2O\\ (10) 2Al + 6H_2SO_4 \to Al_2(SO_4)_3 + 3SO_2 + 6H_2O\)
Hướng làm:
Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức
\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)
\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)
\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)
\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)
\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)
\(< =>x+2021=0< =>x=-2021\)
Vậy....
ĐKXĐ: \(x\notin\left\{0;-9\right\}\)
Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)
Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)
\(\Leftrightarrow9x^2+81x+180=0\)
\(\Leftrightarrow x^2+9x+20=0\)
\(\Leftrightarrow x^2+4x+5x+20=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-4;-5}
Bài 2 :
1) \(x-70=-45\) 2) \(\frac{4}{7}:x=\frac{12}{28}\)
\(\Rightarrow\) \(x=-45+70\) \(\Rightarrow x=\frac{4}{7}:\frac{12}{28}\)
\(\Rightarrow\) \(x=25\) \(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=25\) Vậy \(x=\frac{4}{3}\)
3) Giống câu c) ở bài 1
4) \(x-50=-35\) 5) \(\frac{4}{7}.x=\frac{11}{18}\)
\(\Rightarrow x=-35+50\) \(\Rightarrow x=\frac{11}{28}:\frac{4}{7}\)
\(\Rightarrow x=15\) \(\Rightarrow x=\frac{77}{72}\)
Vậy \(x=15\) Vậy \(x=\frac{77}{72}\)
6) \(\left(\frac{2}{3}x+2,5\right):2\frac{2}{6}=6\)
\(\Rightarrow\)\(\left(\frac{2}{3}x+2,5\right):\frac{14}{6}=6\)
\(\Rightarrow\) \(\frac{2}{3}x+2,5=6.\frac{14}{6}\)
\(\Rightarrow\frac{2}{3}x+2,5=14\)
\(\Rightarrow\frac{2}{3}x=\frac{23}{2}\)
\(\Rightarrow x=\frac{23}{2}:\frac{2}{3}\)
\(\Rightarrow x=\frac{69}{4}\)
Vậy \(x=\frac{69}{4}\)
Bài 1:
1) \(\frac{7}{5}+\frac{-8}{5}=-\frac{1}{5}\)
2) \(-\frac{6}{5}.\frac{15}{24}=-\frac{3}{4}\)
3) \(\left(\frac{2}{3}+1,5\right)-3,5:7\frac{1}{2}=\)\(\frac{13}{6}-\frac{7}{15}=\frac{17}{10}\)
4) \(\frac{5}{8}-\frac{-7}{9}=\frac{5}{8}+\frac{7}{9}=\frac{101}{72}\)
5)\(\frac{-7}{3}.\frac{12}{28}=-1\)
+) ĐK: x khác -5
\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11\)
<=> \(x^2+\frac{25x^2}{\left(x+5\right)^2}-2.x\frac{5x}{\left(x+5\right)}+\frac{10x^2}{\left(x+5\right)}=11\)
<=> \(\left(x-\frac{5x}{x+5}\right)^2+\frac{10x^2}{x+5}=11\)
<=> \(\left(\frac{x^2}{x+5}\right)^2+\frac{10x^2}{x+5}-11=0\) ( đặt t = x^2/x+5 => có phương trình: t^2 + 10t - 11 = 0 => giải t => tìm x )
<=> \(\orbr{\begin{cases}\frac{x^2}{x+5}=1\\\frac{x^2}{x+5}=-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-x-5=0\\x^2+11x+55=0\left(vn\right)\end{cases}}\Leftrightarrow x=\frac{1}{2}\pm\frac{\sqrt{21}}{2}\) ( thỏa mãn)
\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11ĐK:x\ne-5\)
\(\Leftrightarrow\frac{x^2\left(x+5\right)^2}{\left(x+5\right)^2}+\frac{25x^2}{\left(x+5\right)^2}=\frac{11\left(x+5\right)^2}{\left(x+5\right)^2}\)
Khử mẫu ta đc : \(\Leftrightarrow x^2\left(x+5\right)^2+25x^2=11\left(x+5\right)^2\)
\(\Leftrightarrow x^4+10x^3+25x^2+25x^2=11x^2+110x+275\)
\(\Leftrightarrow x^4+10x^3+50x^2-11x^2-110x-275=0\)
\(\Leftrightarrow x^4+10x^3+39x^2-110x-275=0\)