K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

1.D

2.C

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({4^6}.\sqrt {0,1}  = 1295,2689\)

b) \(\sqrt[8]{{2,{1^{18}} + 1}} - \sqrt {2,{1^{12}} + 1}  =  - 80,4632\)

c) \(\frac{{1,{5^3}}}{{\sqrt[3]{{6,8}}}} = 1,7814\)

1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằnga, \(4+4\sqrt{3}\)            b, \(2+\sqrt{3}\)                c,4                   d, \(2\sqrt{3}\)2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng a, -2x+6                 b,2x-6                     c -6                  d, 63, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúnga, f(2)<f(3)            b, f(-3)< f(-4) ...
Đọc tiếp

1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng

a, \(4+4\sqrt{3}\)            b, \(2+\sqrt{3}\)                c,4                   d, \(2\sqrt{3}\)

2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng 
a, -2x+6                 b,2x-6                     c -6                  d, 6

3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3)            b, f(-3)< f(-4)            c, f (-4)>f(2)      d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng 
a, \(R=\dfrac{a\sqrt{3}}{3}\)        b, R=a                  c, \(R=a\sqrt{3}\)      d, \(R=\dfrac{a\sqrt{3}}{2}\)

3
4 tháng 2 2022

1. \(2M-N=\dfrac{2}{2-\sqrt{3}}-\sqrt{6}.\sqrt{2}=\dfrac{2-2\sqrt{3}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}=\)\(\dfrac{2-4\sqrt{3}+6}{2-\sqrt{3}}=\dfrac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

Đáp án C

2. Ta có: A= \(-x+\sqrt{\left(6-x\right)^2}=-x+\left|6-x\right|\)

Mà x>6 \(\Rightarrow6-x< 0\)A=-x-6+x=-6

Đáp án C

3. Vẽ đồ thị hàm f(x) ta có: 

Ta thấy f(2)<f(3), chọn Đáp án A

4. 

Khi đó, bán kính của đường tròn bằng \(\dfrac{2}{3}\)đường cao của tam giác đều ABC

Ta có: \(R=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

Đáp án A

Câu 1: C

Câu 2: C

Câu 3: A

Câu 4: A

 

10 tháng 8 2023

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

10 tháng 8 2023

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)

2 tháng 4 2017

a). Nếu dùng máy tính CASIO fx-500 MS ta làm như sau

Ấn

Ấn liên tiếp phím cho đến khi màn hình hiện ra

Ấn liên tiếp để lấy 4 chữ số phần thập phân. Kết quả hiện ra trên màn hình là 8183.0047.

b)

Kết quả 51139.3736.


12 tháng 8 2016

\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)

\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)

5 tháng 9 2023

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)