Tìm x ở dạng lũy thừa
1/2.2^x+4.2^x=9.2^5
Mọi người giúp với ạ em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|x-1|=4-2x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =2\\\left(4-2x-x+1\right)\left(4-2x+x-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =2\\\left(-3x+5\right)\left(3-x\right)=0\end{matrix}\right.\)
hay x=5/3
b: \(\Leftrightarrow2^x\cdot\dfrac{9}{2}=9\cdot2^5\)
\(\Leftrightarrow2^x=64\)
hay x=6
Lời giải:
Lần sau bạn nhớ ghi đầy đủ đề. $ABC$ là tam giác vuông tại $A$.
$\frac{AB}{AC}=\frac{3}{4}$
$\Rightarrow AC=\frac{4AB}{3}=\frac{4.15}{3}=20$ (cm)
Áp dụng định lý Pitago:
$y=BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25$ (cm)
$S_{ABC}=AB.AC:2=AH.BC:2$
$\Rightarrow AB.AC=AH.BC$
$\Rightarrow x=AH=\frac{AB.AC}{BC}=\frac{15.20}{25}=12$ (cm)
\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)
Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
Chứng minh:
\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)
\(\text{+Nếu }ac+bd>0\)
\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)
Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(ad=bc\)
\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)
\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)
\(=\sqrt{64}=8.\)
Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)
Vậy GTNN của biểu thức là 8.
\(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\\ \Rightarrow2^n\left(\dfrac{1}{2}+4\right)=9\cdot2^5\\ \Rightarrow2^n\cdot\dfrac{9}{2}=9\cdot2^5\\ \Rightarrow2^{n-1}\cdot9=9\cdot2^5\\ \Rightarrow n-1=5\\ \Rightarrow n=6\)
\(\frac{1}{2}2^x+4.2^x=9.2^5\)
\(\Leftrightarrow2^x\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^x\frac{9}{2}=9.2^5\)
\(\Leftrightarrow2^x\frac{9}{2}=288\)
\(\Leftrightarrow2^x=64\)
\(\Leftrightarrow2^x=2^6\)
\(\Rightarrow x=6\)
\(\frac{1}{2}.2^x+4.2^x=9.2^5\)
<=> \(2^x\left(\frac{1}{2}+4\right)=9.2^5\)
<=> \(2^x.\frac{9}{2}=9.2^5\)
<=> \(2^x=2^6\)
<=> x = 6