K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2020

Áp dụng Cauchy Schwarz

\(A=\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)

\(\ge\frac{\left(1+1+3\right)^2}{x+y+z}=\frac{25}{x+y+z}=25\)

Đẳng thức xảy ra bạn tự giải

1 tháng 8 2017

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

1 tháng 8 2017

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1

1 tháng 5 2018

bạn vào trang này nhé có bài như thến này đấy 

//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm

20 tháng 5 2020

tính diện tích hình vẽ dưới đây

42.4 cm 25.7 cm 30cm 48.4cm 23m 31.6m

28 tháng 9 2019

Ta co:

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{100}{3}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)

Vay \(A_{min}=\frac{100}{3}\)khi \(x=y=z=\frac{1}{3}\)

21 tháng 2 2017

Dễ dàng CM được BĐT sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)(BĐT Nestbit)

Vậy: \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge3\)

\(\Leftrightarrow P+a+b+c\ge3\Leftrightarrow P\ge3-2=1\)

Vậy Min P=1 <=> x=y=z=\(\frac{2}{3}\)

3 tháng 10 2018

sửa đề: z+4>0

3 tháng 10 2018

Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0

a + b + c = 6

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)

\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)

Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)

18 tháng 7 2017

Áp dụng BĐT Cauchy có:

 S= \(\frac{1}{x}\)\(\frac{4}{y}\)+\(\frac{9}{z}\)\(\frac{1^2}{x}\)\(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)\(\frac{6^2}{1}\)=36

Vậy Min S=36

cái đó là bđt schwarts Đ à

13 tháng 2 2020

Ta chứng minh:  \(x^2+y^2+z^2\ge xy+yz+zx\)

Thật vậy \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Áp dụng BĐT Svacxo, ta có:

\(\text{ Σ}_{cyc}\frac{1}{1+xy}\ge\frac{\left(1+1+1\right)^2}{3+xy+yz+zx}=\frac{9}{3+xy+yz+zx}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

13 tháng 2 2020

Theo hệ quả của bất đẳng thức Cauchy ta có :
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Do \(x^2+y^2+z^2\le3\)

\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow1\ge xy+yz+xz\)

\(\Rightarrow4\ge xy+yz+xz+3\)

\(\Rightarrow\frac{9}{4}\le\frac{9}{3+xy+xz+yz}\left(1\right)\)

Ta có : \(C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+xz}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{4}\)

Vậy \(C_{min}=\frac{9}{4}\)

Dấu " =" xảy ra khi \(x=y=z=\sqrt{\frac{1}{3}}\)

Chúc bạn học tốt !!!