Tìm x sao cho: \(\left|x-2020\right|-\left|x+2020\right|=4040\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ
\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x
Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)
\(\Rightarrow y\ge2021\)
Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn
\(\Rightarrow y=2021\)
Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)
Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho
- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)
Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)
\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm
Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)
`(x+sqrt{x^2+2020})(sqrt{x^2+2020}-x)=x^2+2020-x^2=2020`
`=>y+sqrt{y^2+2020}=sqrt{x^2+2020}-x`
`<=>x+y=sqrt{x^2+2020}-sqrt{y^2+2020}`
Tương tự:`x+y=sqrt{y^2+2020}-sqrt{x^2+2020}`
Cộng từng vế
`=>2(x+y)=0`
`<=>S=0+2020=2020`
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\) (1)
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(y-\sqrt{y^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)
\(\Leftrightarrow\left(y^2-y^2-2020\right)\left(x+\sqrt{x^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)
\(\Leftrightarrow-x-\sqrt{x^2+2020}=y-\sqrt{y^2+2020}\) (2)
Từ (1) (2) cộng vế với vế \(\Rightarrow-\left(x+y\right)-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)=x+y-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow-2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\)
\(S=x+y+2020=2020\)
\(F\left(x\right)=\int\left(e^x.ln\left(ax\right)+\dfrac{e^x}{x}\right)dx=\int e^xln\left(ax\right)dx+\int\dfrac{e^x}{x}dx=\int e^xlnxdx+\int\dfrac{e^x}{x}dx+\int e^x.lna.dx\)
Xét \(I=\int e^xlnxdx\)
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=lnx.e^x-\int\dfrac{e^x}{x}dx\)
\(\Rightarrow F\left(x\right)=e^x.lnx+e^x.lna+C\)
\(F\left(\dfrac{1}{a}\right)=e^{\dfrac{1}{a}}ln\left(\dfrac{1}{a}\right)+e^{\dfrac{1}{a}}.lna+C=0\Rightarrow C=0\)
\(F\left(2020\right)=e^{2020}ln\left(2020\right)+e^{2020}.lna=e^{2020}\)
\(\Rightarrow ln\left(2020a\right)=1\Rightarrow a=\dfrac{e}{2020}\)
ko bt dung ko >:
TH1: (x-2018).(x-2019).(x-2020) khac 0
ta co: (x-2018).(x-2019).(x-2020) la 3 so lien tiep => (x-2018).(x-2019).(x-2020) chia het cho 3
ma (x-2018).(x-2019) la 2 so lien tiep => (x-2018).(x-2019).(x-2020) la so chan
Vi ko co SCP nao la so chan ma chia het cho 3 => truong hop nay loai
TH2: (x-2018).(x-2019).(x-2020) =0
=> x=2019
p/s: ko chac, sai dung nem da--ko can xay biet thu :(
\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)
\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)
\(\Leftrightarrow2\left(x+2y\right)=0\)
\(\Leftrightarrow x=-2y\)
\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)
\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)
\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
đâu có đâu bạn ???
Mình dùng công cụ công thức của hoc24.vn mà
Bạn đợi chút nó sẽ load ra liền
\(PT< =>-|x+2020|+|x-2020|=4040\)(viết cho dễ nhìn)
Xét \(x< -2020\)thì tương đương với \(-x+2020+x+2020=4040\)
\(< =>4040=4040\)(thỏa mãn mọi x > -2020)
Xét \(-2020\le x< 2020\)thì tương đương với \(-x+2020-x-2020=4040\)
\(< =>x=-\frac{4040}{2}=-2020\)(tmđk)
Xét \(x\ge2020\)thì tương đương với \(x-2020-x-2020=4040\)
\(< =>-4040=4040\)(vô lí)
Vậy ta có tập nghiệm \(x\le-2020\)thỏa mãn pt trên
làm xong tự nhiên ấn hủy :(( phải làm lại từ đầu