K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Ai bảo bạn thế? Ví dụ hàm $f(x)=x^2+2x$ đồng biến trên $(-1;+\infty)$ nhưng nó có nghiệm $x=0$ lớn hơn $-1$ đấy.

3 tháng 12 2018

a) Ta có: 1 - 3 < 0

⇒ Hàm số trên nghịch biến trên R

Bài 1:

a: Để (d) là hàm số bậc nhất thì 2m-2<>0

hay m<>1

b: Để (d) là hàm số đồng biến thì 2m-2>0

hay m>1

c: Hàm số (d') đồng biến vì a=4>0

Bài 2: 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)

13 tháng 12 2017

a) y = –( m 2  + 5m) x 3  + 6m x 2  + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

1:

a: m^2+1>=1>0 với mọi m

=>y=(m^2+1)x-5 luôn là hàm số bậc nhất

b: Do m^2+1>0 với mọi m

nên hàm số y=(m^2+1)x-5 đồng biến trên R

29 tháng 11 2019

Đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

31 tháng 7 2018

y = –( m 2  + 5m) x 3  + 6m x 2 + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +)  m 2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

∆ ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m  ≤  0 ⇔ –5/3  ≤  m  ≤  0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3  ≤  m  ≤  0 thì hàm số đồng biến trên R.

8 tháng 2 2021

a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)

\(\Leftrightarrow m\ne3\)

b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)

\(\Leftrightarrow m>3\)

Vậy ...

c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0 

\(\Leftrightarrow a>0\)

\(\Leftrightarrow3-m>0\)

\(\Leftrightarrow m< 3\)

Vậy ...

 

a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)

hay \(m\ne3\)

b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)

\(\Leftrightarrow m>3\)

c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0

hay m<3

11 tháng 9 2019

Hàm số y = (3 -  2  )x + 1 có hệ số a = 3 -  2  , hệ số b = 1

Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R