Tính B = 1 + 2 + 3 + ... + 98 + 99
Cảm ơn các bạn nhờ các bạn giúp mình cách giải
Thanks you>.<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
A,-1 + 3 - 5 + 7 -... + 97 - 99
-1 + ( 3 - 5 ) + (7 - 9 ) + ... + ( 97 - 99 )
-1 + (-2) + (-2) +...+(-2)
-1 + (-2) x 49
-1+(-98)
-99
B,1+2-3-4+...+97+98-99-100
(1+2-3-4)+...+(97+98-99-100)
(-4)+...+(-4)
(-4) x 25
-100
tiện thể bạn giải hộ mình câu này
14ab:26=ab
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
a) Điều kiện: \(x\ne-5\)
Nghiệm của BPT là -5 <x <-3.
b) Tương tự, nghiệm của BPT là: \(\orbr{\begin{cases}x< -1\\x>3\end{cases}}\)
Mà em mới lớp 7 à nên k biết nghiệm là gì hết á, chị có cách nào khác k ạ???
a) Ta có : ( x+3 ).( x- 5 ) = 0
suy ra: x+3 = 0 hoặc x - 5 = 0
suy ra : x = -3 hoặc x = 5
KL : Vậy x = -3 hoặc x = 5
Công thức này bạn ko cần chứng minh lại nhé !
\(1+2+3+.....+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng với n = 99 ta có:
\(1+2+3+....+98+99=\frac{98\cdot\left(99+1\right)}{2}=4900\)
Vậy B=4900
giải
Từ 1 đến 99 có 99 số hạng
Tổng B cần tìm là:
( 99+1 ).99:2=4950
đ/s:4950