A= x^2 × (a-b) + b × (1-x) + x × (bx+b) - ax × (x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm mẫu 1 phần thôi men còn lại tự làm
giải
a)
ax^3+ bx-24 x^2+4x+3 ax-4a ax^3+4ax^2+3ax - -4ax^2+(b-3a)x-24 -4ax^2-16ax-12a - (b-3a+16a)x-(24-12a)
Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)
\(a,\Leftrightarrow2x^3-x^2+ax+b=\left(x-1\right)\left(x+1\right)\cdot a\left(x\right)\)
Thay \(x=1\Leftrightarrow2-1+a+b=0\Leftrightarrow a+b=-1\)
Thay \(x=-1\Leftrightarrow-2-1-a+b=0\Leftrightarrow b-a=3\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
\(b,\Leftrightarrow ax^3+bx^2+2x-1=\left(x-1\right)\left(x+6\right)\cdot b\left(x\right)\)
Thay \(x=1\Leftrightarrow a+b+2-1=0\Leftrightarrow a+b=-1\)
Thay \(x=-6\Leftrightarrow-216a+36b+12-1=0\Leftrightarrow216a-36b=11\)
Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\216a-36b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{25}{252}\\b=-\dfrac{227}{252}\end{matrix}\right.\)
\(c,\Leftrightarrow ax^4+bx^3+1=\left(x+1\right)^2\cdot c\left(x\right)\)
Thay \(x=-1\Leftrightarrow a-b+1=0\Leftrightarrow b=a+1\)
\(\Leftrightarrow ax^4+\left(a+1\right)x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^4+ax^3+x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^3\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(ax^3+x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow ax^3+x^2-x+1⋮\left(x+1\right)\)
Thay \(x=-1\Leftrightarrow-a+1+1+1=0\Leftrightarrow a=3\Leftrightarrow b=4\)
Ta có: \(A=x^2\left(a-b\right)-ax\left(x+1\right)+b\left(1-x\right)+x\left(bx+b\right)\)
\(=ax^2-bx^2-ax^2-ax+b-bx+bx^2+xb\)
\(=-ax+b\)
a) \(xy+1-x-y\)
\(=x\left(y-1\right)-\left(y-1\right)\)
\(=\left(y-1\right)\left(x-1\right)\)
b) \(ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
c) \(x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2\right)\)
d) \(x^2+ab+ax+bx\)
\(=x\left(b+x\right)+a\left(b+x\right)\)
\(=\left(b+x\right)\left(a+x\right)\)
e) \(16-x^2+2xy-y^2\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
f) \(ax^2+ax-bx^2-bx-a+b\)
\(=\left(ax^2+ax-a\right)-\left(bx^2+bx-b\right)\)
\(=a\left(x^2+x-1\right)-b\left(x^2+x-1\right)\)
\(=\left(x^2+x-1\right)\left(a-b\right)\)