Số chính phương là j z mấy bạn :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số chính phương là số được viết dưới dạng a^2 với a thuộc Z
Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là một số tự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên khác.
Số chính phương hiển thị diện tích của một hình vuông có chiều dài cạnh bằng số nguyên kia.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
- Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.
- Khi phân tích một số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
- Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.
- Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)(a-b).
- Số ước nguyên dương của số chính phương là một số lẻ.
- Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.
- Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...
VD :
9 là bình phương của 3
16 là bình phương của 4
.....
Số chính phương là kết quả sau khi thu được bình phương của một số.
VD: 32=9
=> Số 9 là số chính phương
152=225
=> Số 225 là số chính phương
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương
Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)
\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
n phải chắn
n=2t
2t+4 và 4t
4t chính phương => t=k^2
2t+4=p^2
2k^2+4=p^2
(p-2)(p+2)=2.k^2
k=4=>t=16
n=32
thử lại
n+4=32+4=36=6^2
2n=32*2=64=8^2
ok
https://vi.wikipedia.org/wiki/S%E1%BB%91_ch%C3%ADnh_ph%C6%B0%C6%A1ng
Số chính phương
Bách khoa toàn thư mở Wikipedia
Buớc tưới chuyển hướngBước tới tìm kiếm
Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. |
Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là một số tự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên.
Số chính phương hiển thị diện tích của một hình vuông có chiều dài cạnh bằng số nguyên kia.
Số chính phương là các số không âm. Một định nghĩa khác: số chính phương là số có căn bậc hai là một số nguyên.
Mục lục
- 1Tính chất
- 2Đặc điểm
- 3Xem thêm
- 4Tham khảo
- 5Liên kết ngoài
Tính chất[sửa | sửa mã nguồn]
Số m là một số chính phương khi và chỉ khi có thể sắp xếp m điểm thành một hình vuông:
m = 12 = 1 | |
m = 22 = 4 | |
m = 32 = 9 | |
m = 42 = 16 | |
m = 52 = 25 |
Đặc điểm[sửa | sửa mã nguồn]
- Số chính phương không bao giờ tận cùng là 2, 3, 7, 8, chỉ có chữ số tận cùng là 0, 1, 4, 5, 6, 9.
- Khi phân tích một số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
- Số chính phương chia cho 3 không bao giờ có số dư là 2; chia cho 4 không bao giờ dư 2 hoặc 3; số chính phương lẻ khi chia 8 luôn dư 1.
- Công thức để tính hiệu của hai số chính phương: a2-b2=(a-b)(a+b)
- Số ước nguyên dương của số chính phương là một số lẻ.
- Số chính phương chia hết cho số nguyên tố p thì chia hết cho p2.
- Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, 1 + 3 + 5 + 7 + 9,...v.v
Nội Dung là : Thể hiện tấm lòng yêu thương của Bác dành cho quân và dân . Đồng thời thể hiện tình cảm yêu quý , , cảm phục của người chiến sĩ và nhân dân với Bác
Nói lên tình yêu thương dân của Bác: một cị lãnh tụ vĩ đại của nhân dân; cả đời chăm lo cho tổ quốc;.. Bên cạnh đó còn nói lên sự kính trọng; yêu quí của anh đội viên đối với Bác, anh đội viên hết sức cảm động trước những hành động của Bác trong 1 đêm không ngủ, ,một đêm giữa rừng Việt Bắc với cơn mưa lạnh thấu xương, thế mà Bác lại không ngủ để lo cho các anh,...Bộc lộ tình yêu thương vô bờ bến của Bác dành cho tất cả các anh bộ đội, nhân dân như một người cha già cùng tình yêu thương con của mình!
là số mà số khác mũ 2 lên ví dụ 42=16
16 là số chính phương
Là bình phương của 1 số tự nhiên