K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2020

Gọi chiều cao của cây là h = AB và cọc tiêu DC = 2m.

Khoảng cách từ chân đến mắt người đo là FE = 1,6m.

Cọc xa cây một khoảng HG = 15m, và người cách cọc một khoảng CE= 0,8m và gọi I là giao điểm của BD và AC.

Ta có: AB ⊥ AI, DC ⊥ AI, FE ⊥ AI

⇒ AB // DC // FE.

Ta có: ΔEFI Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔCDI (vì EF // CD)

=> EFCDEFCD=EICIEICI

Mà CD = 2m , EF = 1,6m

Nên 1,621,62=EICIEICI=>EICIEICI=4545=>EI4EI4=CI5CI5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

EI4EI4CI5CI5=CI−EI5−4CI−EI5−4=CE1CE1=0,8

=>EI1EI1=0,8=> EI = 0,8.4 = 3,2

=>CI5CI5=0,8=> CI= 0,8.5 = 4

Mà CI – EI = CE = 0,8

⇒ EI = 0,8.4 = 3,2m; CI = 5.0,8 = 4m.

⇒ AI = AC + AE + EI = 15 + 0,8 + 3,2 = 19m

+ ΔCDI Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABI (vì CD // AB)

CIAICIAI=CDABCDAB

AB=CD.AICICD.AICI=2.1942.194=9,5 m

Vậy cây cao 9,5m.

11 tháng 4 2022
20 tháng 2 2020

A B C D O M

Xét \(\Delta MBD\)cân tại M có : 

\(\widehat{BDM}=60^0\)

\(\Rightarrow\Delta MBD\)là tam giác đều 

\(\Rightarrow\widehat{BDM}=60^0\)

\(\Rightarrow\widehat{BDA}=120^0\)

\(\Rightarrow\)Khi M di chuyển trên cung nhỏ BC thì M di chuyển trên cung tròn ( nằm trên nửa mặt phẳng bờ AB chưa điểm M ) nhìn AB một góc bằng \(120^0\)

Xét \(\Delta DBA\)và \(\Delta MBC\)có :
\(BA=BC\)( vì tam giác ABC đều )

\(\widehat{BAD}=\widehat{BCM}\)( cùng chắn cung BM )
\(\widehat{ABD}=\widehat{CBM}\left(=60^0-\widehat{DBC}\right)\)

Suy ra \(\Delta DBA=\Delta MBC\)

\(\Rightarrow MC=DA\)

\(\Rightarrow MA+MB+MC=MA+MD+DA=2MA\)

\(MA+MB+MC\)lớn nhất khi MA lớn nhất 

\(\Rightarrow AM\)là đường kính của \(\left(O\right)\)

\(\Rightarrow M\)là điểm chính giữa của cung BC

Chúc bạn học tốt !!!

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

12 tháng 5 2017

Chọn B.

Phương pháp: Sử dụng phương pháp tọa độ trong mặt phẳng. 

 

7 tháng 10 2019

Chọn B.

Phương pháp: Sử dụng phương pháp tọa độ trong mặt phẳng. 

Cách giải: Chọn hệ trục tọa độ Đề các vuông góc như sau:

Gốc O, chiều dương trục hoành là tia OC, chiều dương trục tung là tia OE, đơn vị hai trục là đơn vị độ dài 1m

Khi đó ta có phương trình Parabol là 

 nằm trên Parabol thì khoảng cách ngắn nhất từ đường tròn đến M là 

 

Khảo sát hàm số suy ra khoảng cách ngắn nhất xấp xỉ 17,7