chứng minh x^2-x-6 vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
- x^6 lớn hơn hoặc bằng 0;x^6>x^3 =>x^6-x^3 lớn hơn hoạc bằng 0 (1)
- Chứng minh tương tự ta được x^2-x lớn hơn hoặc bằng 0 (2)
- từ (1) và (2) suy ra :x^6-x^3+x^2-x+1 >0 hoặc=0
- mà 1>0 =>x^6-x^3+x^2-x+1>0
`x^2+x+6=0`
`<=>x^2+x+1/4+23/4=0`
`<=>(x+1/2)^2=-23/4(vô lý)`
`=>` vô nghiệm
* Bạn tạo HĐT để chứng minh nó lớn hơn 0 là sẽ vô nghiệm.
Ta có : $x^2+x+6=\bigg(x^2+2.x.\dfrac{1}{2} + \dfrac{1}{4}\bigg) + \dfrac{23}{4}$
$ = \bigg(\dfrac{1}{2} + x\bigg) + \dfrac{23}{4}>0$
Do đó đa thức cho vô nghiệm.
Với x khác 1 nhân cả hai vế với (x-1) khác 0
\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)
\(x^7=1\)
với x>1 hiển nhiên VT>1 => vô nghiệm
với 0<=x<1 hiển nhiên VT<1
Với x<0 do số mũ =7 lẻ => VT<0<1
Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x
Ta có:\(x^2-3x+6=0\)
\(\Rightarrow x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2=-\frac{15}{4}\)
Vì x2 không thể âm
Suy ra PT vô nghiệm
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
Do 3x^2>=0 với mọi x
x^2>=0 với mọi x
6>0
Nên đa thức P(x) vô nghiệm
Bài làm:
Ta có: \(x^2-x-6=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)-\frac{25}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{5}{2}\\x-\frac{1}{2}=-\frac{5}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
=> Mâu thuẫn với đề bài
=> điều giả sử sai
=> Phương trình có 2 nghiệm x=3 và x=-2
\(x^2-x-6=0\)
Vì \(\left(-1\right)^2-4.\left(-6\right)=1+24>0\)
Nên pt có 2 nghiệm phân biệt :
\(x_1=\frac{-1-5}{2}=-3;x_2=\frac{-1+5}{2}=2\)
=> ko thể CM pt vô nghiệm