Tìm minA=x^4-2x^2-3|x^2-1|-9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18
= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18
= 2(1 - 2x) - 18 = 0
= 2 - 4x - 18 = 0
= -16 - 4x = 0
= -4x = 16
= x = \(\dfrac{16}{-4}=-4\)
b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0
= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0
= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0
= 12x - 5 = 0
= 12x = 5
= x = \(\dfrac{5}{12}\)
c) (x - 5)2 - x(x - 4) = 9
= x2 - 10x + 25 - x2 + 4x - 9 = 0
= -6x + 16 = 0
= -6x = -16
= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)
d) (x - 5)2 + (x - 4)(1 - x)
= x2 - 10x + 25 + 5x - x2 - 4 = 0
= -5x + 21 = 0
= -5x = -21
= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\)
Chúc bạn học tốt
a: =4x^2-4x+1+9
=(2x-1)^2+9>=9
Dấu = xảy ra khi x=1/2
b: =2(x^2+3x)
=2(x^2+3x+9/4-9/4)
=2(x+3/2)^2-9/2>=-9/2
Dấu = xảy ra khi x=-3/2
c: =x^2-x+1/4-1/4
=(x-1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=1/2
A = (x^4-2x^2+1)+(3x^2-6x+3)+5
= (x^2-1)^2+3.(x-1)^2+5 >= 5
Dấu "=" xảy ra <=> x^2-1=0 và x-1=0 <=> x=1
Vậy Min A = 5 <=> x=1
k mk nha
A=\(x^4+x^2-6x+9\)
\(=\left(x^4-2x^2+1\right)\left(3x^2-6x+3\right)+5\)
\(=\left[\left(x^2\right)^2-2x^2.1+1^2\right]+3.\left(x^2-2x+1\right)+5\)
\(=\left(x^2-1\right)^2+3.\left(x-1\right)^2+5\ge5\)
Min A=5 khi \(\hept{\begin{cases}x^2-1=0\\x-1=0\end{cases}}\)=> x = 1
a) \(x=\dfrac{25}{72}\)
b)\(x=-\dfrac{1}{4}\)
\(x=\dfrac{3}{2}\)
c)\(x=\dfrac{5}{4}\) hoặc
x \(=\dfrac{8}{5}\)
d và e chịu vì mk kg giỏi lắm về mũ
f)\(x=-2\)
G)\(x=-\dfrac{5}{12}\)
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
\(A=x^4-2x^2+1-3\left|x^2-1\right|-10\)
\(=\left|x^2-1\right|^2-3\left|x^2-1\right|-10\)
\(=\left(\left|x^2-1\right|-\frac{3}{2}\right)^2-\frac{49}{4}\ge-\frac{49}{4}\)
\(A_{min}=-\frac{49}{4}\) khi \(\left|x^2-1\right|=\frac{3}{2}\Rightarrow x=\pm\sqrt{\frac{5}{2}}\)
cảm ơn bạn