tim sự xác định của biểu thức chứa căn
\(\sqrt{\frac{-2\sqrt{6+\sqrt{23}}}{-x+5}}\)
\(\sqrt{49x^2-24x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{49x^2-24x+4}=\sqrt{\left(7x-\dfrac{12}{7}\right)^2+\dfrac{52}{49}}\)
Có: \(\left(7x-\dfrac{12}{7}\right)^2\ge0\forall x\Rightarrow\left(7x-\dfrac{12}{7}\right)^2+\dfrac{52}{49}\ge\dfrac{52}{49}>0\)
\(\Rightarrow\sqrt{\left(7x-\dfrac{12}{7}\right)^2+\dfrac{52}{49}}>0\) => Biểu thức xác định với mọi x thuộc R
Điều kiện xác định:
49x2 - 24x + 4 ≥ 0
⇔(7x - \(\dfrac{12}{7}\))2 + \(\dfrac{52}{49}\) ≥ 0 (Đây là điều hiển nhiên)
Vậy điều kiện xác định của biểu tức là x∈R
1) \(\sqrt{\sqrt{5}-\sqrt{3x}}\) xát định \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x\ge0\\\sqrt{5}-\sqrt{3x}\ge0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\\sqrt{3x}\le\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\3x\le5\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\x\le\dfrac{5}{3}\end{matrix}\right.\) \(\Rightarrow\) \(0\le x\le\dfrac{5}{3}\)
2) \(\sqrt{\sqrt{6x}-4x}\) xát định \(\Leftrightarrow\) \(\left\{{}\begin{matrix}6x\ge0\\\sqrt{6x}-4x\ge0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ge0\\x\le\dfrac{3}{8}\end{matrix}\right.\) \(\Leftrightarrow\) \(0\le x\le\dfrac{3}{8}\)
3) ta có : \(\left(x-6\right)^6\ge0\forall x\) \(\Rightarrow\) \(\sqrt{\left(x-6\right)^6}\) được xát định \(\forall x\)
4) \(2-4\sqrt{5x+8}\) xát định \(\Leftrightarrow\) \(5x+8\ge0\) \(\Leftrightarrow\) \(5x\ge-8\) \(\Leftrightarrow\) \(x\ge\dfrac{-8}{5}\)
5) \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xát định \(\Leftrightarrow\) \(\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}>0\)
mà ta có \(-2\sqrt{6}+\sqrt{23}< 0\) \(\Rightarrow\) để \(\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}>0\)
\(\Leftrightarrow\) \(-x+5< 0\) \(\Leftrightarrow\) \(x>5\) (và \(x\ne5\) )
6) \(\sqrt{\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}}\) xát định \(\Leftrightarrow\) \(\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}>0\)
mà \(2\sqrt{15}-\sqrt{59}>0\) \(\Rightarrow\) để \(\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}>0\)
thì \(x-7>0\) \(\Leftrightarrow\) \(x>7\) (và \(x\ne7\) )
Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi
Gọi biểu thức trên là A
*Chứng minh A > 1/6
Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)
Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)
Và \(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)
Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)
\(ĐK:\)
\(\sqrt{6}x-4x\ge0\)
\(\Rightarrow\left(\sqrt{6}-4\right)x\ge0\)
\(\Rightarrow x\le0\)
1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)
2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)
\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a
Để \(\sqrt{\frac{-2\sqrt{6+\sqrt{23}}}{-x+5}}\) được xác định thì \(-x+5\ne0;-x+5< 0\)
\(\Leftrightarrow x\ne5;x>5\)
b
Để \(\sqrt{49x^2-34x+4}=\sqrt{\left(x-\frac{17+\sqrt{93}}{49}\right)\left(x-\frac{\sqrt{17}-\sqrt{93}}{49}\right)}\) đươc xác định thì:
\(49x^2-34x+4\ge0\Leftrightarrow\frac{\sqrt{17}-\sqrt{93}}{49}\le x\le\frac{\sqrt{19}+\sqrt{93}}{49}\)