Tính: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)
`(3-\sqrt5)(\sqrt10+\sqrt2)(3-\sqrt5)`
`=(3-\sqrt5)^2 .(\sqrt10+\sqrt2)`
`=(3-6\sqrt5+5)(\sqrt10+\sqrt2)`
`=(8-6\sqrt5)(\sqrt10+\sqrt2)`
`=2\sqrt10 -22\sqrt2`
\(=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
=(căn 5-1)(căn 5-1)(3+căn 5)
=(6-2căn 5)(3+căn 5)
=18+6căn 5-6căn 5-10
=8
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}-\left(\sqrt{7}\right)^2=\sqrt{25}+\sqrt{25}-\sqrt{9}-\sqrt{9}\)
\(=5+5-3-3\)
\(=4\)
c) \(\sqrt{\left(-10\right)^2}+10.\left(-\sqrt{5}\right)^2=\sqrt{100}+10.5\)
\(=10+10.5\)
\(=10+50\)
\(=60\)
Học tốt nha^^
\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)
1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)
2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)
4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)
6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)
7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
`F=sqrt{(3-sqrt2)^2}+sqrt{(1-sqrt2)^2}``
`=3-sqrt2+sqrt2-1=2`
`G=sqrt{(5+sqrt7)^2}-sqrt{(2-sqrt7)^2}`
`=5+sqrt7-(sqrt7-2)`
`=5+sqrt7-sqrt7+2=2`
`H=sqrt{(3-sqrt{10})^2}+sqrt{(2-sqrt{10})^2}`
`=sqrt{10}-3+sqrt{10}-2`
`=2\sqrt{10}-5`
\(F=\left|3-\sqrt{2}\right|+\left|1-\sqrt{2}\right|=3-\sqrt{3}+\sqrt{2}-1=2\)
\(G=\left|5+\sqrt{7}\right|-\left|2-\sqrt{7}\right|=5+\sqrt{7}-\sqrt{7}+2=7\)
\(H=\left|3-\sqrt{10}\right|+\left|2-\sqrt{10}\right|=\sqrt{10}-3+\sqrt{10}-2=2\sqrt{10}-5\)
Lời giải:
Gọi biểu thức là A
\(A=\left[3-\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}\right]\left[\frac{\sqrt{5}(\sqrt{2}+\sqrt{3})}{\sqrt{2}+\sqrt{3}}-3\right]\)
\(=[3-\frac{-\sqrt{5}(1-\sqrt{5})}{1-\sqrt{5}}](\sqrt{5}-3)=(3--\sqrt{5})(\sqrt{5}-3)=(3+\sqrt{5})(\sqrt{5}-3)=5-3^2=-4\)
\(=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}.\left(\sqrt{10}+\sqrt{2}\right).\frac{6-2\sqrt{5}}{2}\)
\(=\frac{\sqrt{5}+1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{5}+1\right).\frac{\left(\sqrt{5}-1\right)^2}{2}\)
\(=\frac{\left(\sqrt{5}+1\right)^2.\left(\sqrt{5}-1\right)^2}{2}\)
\(=\frac{\left[\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\right]^2}{2}\)
\(=\frac{4^2}{2}=8\)
Bài làm
\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3-\sqrt{5}}\)
\(=\left(3\sqrt{5}-3+5-\sqrt{5}\right).\sqrt{6-2\sqrt{5}}\)
\(=\left(2\sqrt{5}+2\right).\sqrt{5-2\sqrt{5}+1}\)
\(=2.\left(\sqrt{5}+1\right).\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2.\left(\sqrt{5}+1\right).\left(\sqrt{5}-1\right)\)
\(=2.\left(5-1\right)\)
\(=2.4\)
\(=8\)