K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2023

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

NV
24 tháng 2 2021

\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)

\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)

\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)

Mà x nguyên dương \(\Rightarrow2x-1>0\)

\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\) 

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

28 tháng 10 2023

scp là gì vậy bạn

9 tháng 11 2021

Sửa đề :

Tìm tất cả cặp số nguyên x, y thỏa mãn: y2+2xy−3x−2=0

Giải 

Coi phương trình đã hco là phương trình bậc hai ẩn yy có tham số x.x.

Ta có: Δ=4x2+12x+8.Δ=4x2+12x+8.

Vì x, y∈Z⇒Δx, y∈Z⇒Δ phải là số chính phương.

⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔⎡⎢ ⎢ ⎢ ⎢⎣{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔⎡⎢ ⎢ ⎢ ⎢⎣{x=−1(tm)k=0{x=−2(tm)k=0.⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔[{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔[{x=−1(tm)k=0{x=−2(tm)k=0.

Với x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1   (tm).x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1   (tm).

Với x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2  (tm).x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2  (tm).

Vậy tập nghiệm của phương trình đã cho là: (x; y)={(−1; 1);  (−2; 2)}.

Nó bị lỗi phông thông cảm 

HT

17 tháng 8 2023

\(y^2+2xy-3x-2=0\)

\(\Leftrightarrow\left(y^2+2xy+x^2\right)-\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)

Nếu \(x+1=0\) thì \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Nếu \(x+2=0\) thì \(\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)

Thử lại, ta thấy thỏa mãn. Vậy ta tìm được các cặp số \(\left(x;y\right)\) thỏa mãn đề bài là \(\left(-1;1\right),\left(-2;2\right)\)

26 tháng 1 2023

x=3
y=1
ez:))

7 tháng 4 2023

giải thik

26 tháng 1 2023

pt này không phân tích thành nhân tử để làm được đáng lẽ ra 4y thì sẽ làm được ấy bạn

=>4xy+6x-10y=20

=>2y(2x-5)+6x-15=5

=>(2x-5)(2y+3)=5

=>\(\left(2x-5;2y+3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;1\right);\left(5;-1\right);\left(2;-4\right);\left(0;-2\right)\right\}\)