tìm GTLN của -x^2-2x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow x^2+2x+3\ge2\)
Dấu = khi x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x^2+2}{x^2-2x+3}=\dfrac{2\left(x^2-2x+3\right)-x^2+4x-4}{x^2-2x+3}=2-\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2+2}\le2\)
Dấu "=" xảy ra khi \(x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT cosi:
\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)
\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)
\(P_{max}=5\) khi \(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4-x^2+2x-1}{x^2+2}=\frac{2\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
\(\frac{x^2+2x+3}{x^2+2}=\frac{\frac{1}{2}x^2+1+\frac{1}{2}x^2+2x+2}{x^2+2}=\frac{\frac{1}{2}\left(x^2+2\right)+\frac{1}{2}\left(x+2\right)^2}{x^2+2}=\frac{1}{2}+\frac{2\left(x+2\right)^2}{x^2+2}\ge\frac{1}{2}\)
Đặt \(A=-x^2-2x+3\)
\(\Rightarrow A=-x^2-2x-1+4=-\left(x^2+2x+1\right)+4=-\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le4\forall x\)
hay \(A\le4\)
Dấu " = " xảy ra \(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\)
Vậy \(maxA=4\)\(\Leftrightarrow x=-1\)
-x2 - 2x + 3
<=> -x2 - 2x - 1 + 4
<=> -( x2 + 2x + 1 ) + 4
<=> -( x + 1 )2 + 4
\(\left(x+1\right)^2\ge\forall x\Rightarrow-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le4\forall x\)
Dấu = xảy ra <=> x + 1 = 0
<=> x = -1
Vậy GTLN của đa thức = 4 khi x = -1