Cho hình thang ABCD có đáy bé bằng \(\frac{1}{3}\)đáy lớn và có diện tích bằng 24cm2. Kéo dài DA và CB cắt nhau tại M. Tính diện tích tam giác MAB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối B với D, kẽ đường cao BH ta có:
S B A D = S D B H vì ADBH là hình chữ nhật.
Mặt khác S D B H = 1 / 3 S D B C vì DH =1/3 DC
Nên S B A D = 1 / 4 S A B C D
= 24 : 4 = 6 ( c m 2 )
Và S D B C = 24 - 6 = 18 ( c m 2 )
Tam giác DBM và tam giác DCM có chung đáy MD và chiều cao BA = 1/3CD
Do đó : S B D M = 1 / 3 S C D M
Suy ra: S B D M = 1 / 2 S D B C
= 1/2 x 18 = 9 ( c m 2 )
Vì S M A B = S B D M - S B A D nên: S M A B = 9 - 6 = 3 ( c m 2 )
Đáp số : S M A B = 3 c m 2
Mình học lớp 4 rồi nhưng bạn có thể vẽ hình được không?Con lười=)))Vừa mới thi học sinh giỏi về
S(ABD) = 1/3 S(ACD)
Mà hai hình này chung đáy AD => chiều cao hạ từ B = 1/3 chiều cao hạ từ C.
=> S(MAB) = 1/3 S(MAC)
=> S(MAB) = 1/2 S(ABC)
S(ABC) = 1/3 S(ACD) = 1/4 S(ABCD)
=> S(MAB) = 1/2 x 1/4 = 1/8 S(ABCD)
Vậy S(MAB) = 16 x 1/8 = 2 cm2
Hai tg ABC và tg ACD có đường cao từ C->AB = đường cao từ A->CD nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{3}\Rightarrow S_{ACD}=3xS_{ABC}\)
\(\Rightarrow S_{ABCD}=S_{ABC}+S_{ACD}=S_{ABC}+3xS_{ABC}=4xS_{ABC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{4}xS_{ABCD}\)
Kéo dài AB, từ C dựng đường thẳng song song với AD cắt AB kéo dài tại E => AECD là hình chữ nhật
\(\Rightarrow AE=CD\Rightarrow AB=\dfrac{1}{3}CD=\dfrac{1}{3}AE\Rightarrow AB=\dfrac{1}{2}xBE\)
Hai tg ABC và tg EBC có chung đường cao từ C->AB nên
\(\dfrac{S_{ABC}}{S_{EBC}}=\dfrac{AB}{BE}=\dfrac{1}{2}\)
Hai tg này có chung BC nên
\(\dfrac{S_{ABC}}{S_{EBC}}=\) đường cao từ A->BC = đường cao từ E->BC\(=\dfrac{1}{2}\)
Hai tg AMC và tg EMC có chung MC nên
\(\dfrac{S_{AMC}}{S_{EMC}}=\)đường cao từ A->BC = đường cao từ E->BC\(=\dfrac{1}{2}\)
Hai tg AMC và tg AME có chung AM và đường cao từ C->AD = đường cao từ E->AD nên
\(S_{AMC}=S_{AME}\Rightarrow\dfrac{S_{AME}}{S_{EMC}}=\dfrac{1}{2}\)
Hai tg AME và tg EMC có đường cao từ C->AD = đường cao từ M->EC nên
\(\dfrac{S_{AME}}{S_{EMC}}=\dfrac{AM}{EC}=\dfrac{1}{2}\)
Hai tg MAB và tg ABC có chung AB nên
\(\dfrac{S_{MAB}}{S_{ABC}}=\) đường cao từ A->AB / đường cao từ C->AB = \(\dfrac{AM}{EC}=\dfrac{1}{2}\)
\(\Rightarrow S_{MAB}=\dfrac{1}{2}xS_{ABC}=\dfrac{1}{2}x\dfrac{1}{4}xS_{ABCD}=\dfrac{1}{8}xS_{ABCD}=2,5cm^2\)