K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016

Ta có x chia 7 dư 6.Ta đặt x=7k+6

Khi đó,\(x^2=\left(7k+6\right)^2=49k^2+84k+36=7\left(7k^2+12k+5\right)+1\)

Vậy x2 chia 7 dư 6(đccm)

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$

1 tháng 11 2015

ý bạn là sao ? mình muốn cách giải cơ 

Bài 1:

a) \(3\left(x+5\right)=x-7\)

\(\Leftrightarrow3x+15=x-7\)

\(\Leftrightarrow3x+15-x=-7\)

\(\Leftrightarrow2x+15=-7\)

\(\Leftrightarrow2x=-22\)

\(\Leftrightarrow x=-11\)

Vậy \(x=-11\)

Bài 2:

\(\left|x+2\right|-14=-9\)

\(\Leftrightarrow\left|x+2\right|=5\)

Chia 2 trường hợp:

\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)

Vậy \(x\in\left\{3;-7\right\}\)

Hơi vội, sai thì thôi nhé!

5 tháng 9 2019

Bài 1:

\(a+b=15\)

\(\Rightarrow\left(a+b\right)^2=225\)

\(\Leftrightarrow a^2+2ab+b^2=225\)

\(\Leftrightarrow a^2+4+b^2=225\)

\(\Leftrightarrow a^2+b^2=221\)

Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)

                               \(=221-4\)

                                \(217\)

Bài 2:

Vì \(x:7\)dư 6

\(\Rightarrow x\equiv-1\left(mod7\right)\)

\(\Rightarrow x^2\equiv1\left(mod7\right)\)

Vậy \(x^2:7\)dư 1

18 tháng 7 2023

a : 7 dư 3 cm a2 : 7 dư 2

Ta có:     a = 7k + 3

          ⇔ a2 = (7k + 3)2

          ⇔ a2 = 49k2 + 42k + 9

          ⇔ a2 = 7.(7k2 + 6k + 1) + 2

                7 ⋮ 7 ⇔ 7.(7k2 + 6k + 1) ⋮ 7

          ⇔ a2 = 7.(7k2 + 6k + 1) + 2 : 7 dư 2 (đpcm)

          

    

           

 

18 tháng 7 2023

Cách 2 sử dụng đồng dư thức:

\(\equiv\) 3 (mod 7) ⇔ a2 \(\equiv\) 32 (mod 7)  32 : 7 dư 2 ⇔ a2 : 7 dư 2 (đpcm)

7 tháng 6 2016

Ta có x chia 9 dư 5,ta đặt x=9k+5

Khi đó,\(x^2=\left(9k+5\right)^2=81k^2+90k+25=9\left(9k^2+10k+2\right)+7\)

Vậy x2 chia 9 dư 7(đccm)