Tìm GTLN của \(y=\frac{x}{\left(x+2004\right)^2}\) (x > 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{\left(x+2004\right)^2}=\frac{x}{x^2+4008x+2004^2}\)
\(=\frac{1}{x+\frac{2004^2}{x}+4008}\le\frac{1}{2.2004+4008}=\frac{1}{8016}\)
Dấu "=" xảy ra <=> x = 2004
another way !
Đặt \(\frac{1}{x+2004}=t\Rightarrow x=\frac{1}{t}-2004\)
Ta có:
\(y=\left(\frac{1}{t}-2004\right).t^2=-2004t^2+t=-2004\left(t^2-2\cdot t\cdot\frac{1}{4008}+\frac{1}{4008^2}\right)+\frac{1}{8016}\)
\(=-2004\left(t-\frac{1}{4008}\right)^2+\frac{1}{8016}\le\frac{1}{8016}\)
Đẳng thức xảy ra tại \(x=2004\)
theo bat dang thuc C-S ta co
\(P\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Vay GTLN cua P la 1 dau = khi x=y=z
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
áp dụng bđt cauchy cho 2 số dương, ta có
\(x+y>=2\sqrt{xy}\)
\(x+z>=2\sqrt{xz}\)
\(y+z>=2\sqrt{yz}\)
khi đó \(Q=<\frac{xyz}{2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}}\)
\(Q=<\frac{1}{8}\)
dấu = xảy ra khi và chỉ khi x=y=z
vậy max Q=1/8 khi x=y=z
Đặt \(x+2004=t\left(t>2004\right),k=\frac{1}{x+2004}\Rightarrow x=t-2004\)
\(y=\frac{x}{\left(x+2004\right)^2}=\frac{t-2004}{t^2}=\frac{1}{t}-\frac{2004}{t^2}\)
\(\equiv f\left(t\right)=f\left(k\right)=k-2004k^2\)
$=-{\frac { \left( 4008\,k-1 \right) ^{2}}{8016}}+{\frac{1}{8016}} \leqq \frac{1}{8016}$
Đẳng thức xảy ra khi \(k=\frac{1}{4008}\Rightarrow x=2004\)
PS: Đặt màu mè thế thôi chứ xét hiệu $\frac{1}{8016}-y \geqq 0$ là xong ak:v