K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2020

\(g(x)=-3(1-x^2)-2(x^2-2x-1)\)

\(=-3+3x^2-2x^2+4x+2\)

\(=(3x^2-2x^2)+4x+(-3+2)\)

\(=x^2+4x-1\)

học tốt nha

\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x-1\right)\)

\(\Leftrightarrow g\left(x\right)=-3+3x^2-2x^2+2x+1\)

\(\Leftrightarrow g\left(x\right)=\left(3x^2-2x^2\right)+2x+\left(1-3\right)\)

\(\Leftrightarrow g\left(x\right)=x^2+2x-2\). Vậy..........

12 tháng 6 2021

a) f(x) = 3x3-2x2+7x-1

g(x) = x2+4x-1

b) h(x) = 3x3-2x2+7x-1-x2-4x+1

            = 3x3-3x2+3x

h(x) = 3x3-3x2+3x=0

       ⇒ 3(x3-x2+x)=0

       ⇒ x3-x2+x=0

đến đây mik ko biết làm nữa

=2x^3-2x^2-5x-10-2x^2+4x+x^2(2x-3)-x(x+1)-3x+2

=2x^3-4x^2-4x-8+2x^3-6x^2-x^2+x

=4x^3-11x^2-3x-8

20 tháng 3 2023

a) Ta có:

\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)

\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b) Bậc của đa thức f(x) là 5

c) Ta có:

\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.

\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.

14 tháng 8 2023

a) \(P\left(x\right)-x\left(x+5\right)-\left(2x-3\right)+x^2\left(3x-2\right)\)

\(P\left(x\right)=-x^2-5x-2x+3+3x^3-2x^2\)

\(P\left(x\right)=3x^3+\left(-x^2-2x^2\right)-\left(5x+2x\right)+3\)

\(P\left(x\right)=3x^3-3x^2-7x+3\)

b) \(Q\left(x\right)=2x\left(x+1\right)+3x\left(5-x\right)-7\left(x-5\right)\)

\(Q\left(x\right)=2x^2+2x+15x-3x^2-7x+35\)

\(Q\left(x\right)=-x^2+10x+35\)

a: P(x)=-x^2-5x-2x+3+3x^3-2x^2

=3x^3-3x^2-7x+3

b: Q(x)=2x^2+2x+15x-3x^2-7x+35

=-x^2+10x+35

6 tháng 3 2022

a, \(P=-x^4+x^3+x^2-5x+2\)

hế số cao nhất 2 ; hế số tự do 2 ; bậc 4 

\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)

hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4 

b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)

a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1

=-x^4-5x^3-7x^2+2x-1

Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5

=x^4+5x^3+6x^2-2x+5