cho phương trình x2 + y2 -2mx -2(m-1)y = 0 (1)
1, chứng minh rằng với mọi m (1) là phương trình đường tròn
2, tìm bán kính và giá trị nhỏ nhất của bán kính của đường tròn trên
3, tìm tập hợp tâm của đương tròn (1) khi M thay đổi
4, chứng tỏ các đường tròn này đi qua hai điểm cố định khi M thay đổi
5, tìm M để đường tròn (1) tiếp xúc với đường thẳng x + y -1 = 0
1.
Ta có: \(m^2+\left(m-1\right)^2=2m^2-2m+1=\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}>0;\forall m\)
\(\Rightarrow\) Với mọi m pt đã cho là pt đường tròn
2.
\(R=\sqrt{\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}}\)
\(\Rightarrow R\ge\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)
\(R_{min}=\frac{\sqrt{2}}{2}\) khi \(m=\frac{1}{2}\)
3.
Đường tròn tâm \(I\left(x_I;y_I\right)\Rightarrow\left\{{}\begin{matrix}x_I=m\\y_I=m-1\end{matrix}\right.\)
\(\Rightarrow x_I-y_I=1\Leftrightarrow x_I-y_I-1=0\)
\(\Rightarrow\) Tập hợp tâm I là đường thẳng có pt \(x-y-1=0\)
4.
Gọi \(M\left(x;y\right)\) là điểm cố định mà đường tròn đi qua
\(\Rightarrow x^2+y^2-2mx-2my+2y=0\)
\(\Leftrightarrow x^2+y^2+2y-2m\left(x+y\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\x+y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\y=-x\end{matrix}\right.\)
\(\Rightarrow x^2+\left(-x\right)^2-2x=0\)
\(\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=1\Rightarrow y=-1\end{matrix}\right.\)
\(\Rightarrow\) Đường tròn luôn đi qua 2 điểm cố định có tọa độ \(\left(0;0\right);\left(1;-1\right)\)
5.
Phương trình hoành độ giao điểm:
\(\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\x+y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\y=1-x\end{matrix}\right.\)
\(\Rightarrow x^2+\left(1-x\right)^2-2mx-2\left(m-1\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+1-2mx-\left(2m-2\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-4x-2m+3=0\)
\(\Delta'=4-2\left(-2m+3\right)=4m-2=0\Rightarrow m=\frac{1}{2}\)