K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 7 2020

1.

Ta có: \(m^2+\left(m-1\right)^2=2m^2-2m+1=\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}>0;\forall m\)

\(\Rightarrow\) Với mọi m pt đã cho là pt đường tròn

2.

\(R=\sqrt{\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}}\)

\(\Rightarrow R\ge\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)

\(R_{min}=\frac{\sqrt{2}}{2}\) khi \(m=\frac{1}{2}\)

3.

Đường tròn tâm \(I\left(x_I;y_I\right)\Rightarrow\left\{{}\begin{matrix}x_I=m\\y_I=m-1\end{matrix}\right.\)

\(\Rightarrow x_I-y_I=1\Leftrightarrow x_I-y_I-1=0\)

\(\Rightarrow\) Tập hợp tâm I là đường thẳng có pt \(x-y-1=0\)

4.

Gọi \(M\left(x;y\right)\) là điểm cố định mà đường tròn đi qua

\(\Rightarrow x^2+y^2-2mx-2my+2y=0\)

\(\Leftrightarrow x^2+y^2+2y-2m\left(x+y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\x+y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\y=-x\end{matrix}\right.\)

\(\Rightarrow x^2+\left(-x\right)^2-2x=0\)

\(\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=1\Rightarrow y=-1\end{matrix}\right.\)

\(\Rightarrow\) Đường tròn luôn đi qua 2 điểm cố định có tọa độ \(\left(0;0\right);\left(1;-1\right)\)

5.

Phương trình hoành độ giao điểm:

\(\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\x+y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\y=1-x\end{matrix}\right.\)

\(\Rightarrow x^2+\left(1-x\right)^2-2mx-2\left(m-1\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+1-2mx-\left(2m-2\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-4x-2m+3=0\)

\(\Delta'=4-2\left(-2m+3\right)=4m-2=0\Rightarrow m=\frac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là phương trình đường tròn do có \(xy\).

b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = 2\sqrt 6 \).

3 tháng 7 2017

Đáp án D

26 tháng 3 2017

Để phương trình x 2 + y 2 + m − 4 x + m + 2 y + 3 m + 10 =  là phương trình của một đường tròn có bán kính R = 2 thì:

m − 4 2 2 + ​   m + ​ 2 2 2 − ( 3 m + ​ 10 ) = 2 2 = 4 ⇔ m 2 − 8 m + ​ 16 4 + ​​​   m 2 + ​ 4 m + ​ 4 4 − 3 m − 10 − 4 = 0 ⇔ 2 m 2 − 4 m + ​ 20 4 ​​​  − 3 m − 14 = 0

⇔ 2 m 2 − 4 m + ​ 20 − 12 m − 56 = 0 ⇔ 2 m 2 − 16 m    − 36 = 0 ⇔ m = 4 ± 34

ĐÁP ÁN A

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có \(I\left( {2; - 3} \right)\) và \(R = \sqrt {{2^2} + {{\left( { - 3} \right)}^2} - \left( { - 12} \right)}  = 5\)

b) Ta có: \({5^2} + {1^2} - 4.5 + 6.1 - 12 = 0\). Suy ra M thuộc \(\left( C \right)\). Tiếp tuyến d của (C) tại M có vectơ pháp tuyến là \(\overrightarrow {{n_d}}  = \overrightarrow {IM}  = \left( {3;4} \right)\), đồng thời d đi qua điểm \(M\left( {5;1} \right)\).

Vậy phương trình  của d là  \(3\left( {x - 5} \right) + 4\left( {y - 1} \right) = 0 \Leftrightarrow 3x + 4y - 19 = 0\).

31 tháng 3 2018

Giải bài 7 trang 93 sgk Hình học 10 | Để học tốt Toán 10

Gọi A, B là hai tiếp điểm của tiếp tuyến kẻ từ M đến (C).

Giải bài 7 trang 93 sgk Hình học 10 | Để học tốt Toán 10

Mà điểm I là cố định nên tập hợp các điểm M là đường tròn tâm I, bán kính R = 6 và có phương trình: (x – 1)2 + (y – 2)2 = 36.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường tròn \({(x + 1)^2} + {(y - 5)^2} = 9\) có tâm \(I\left( { - 1;5} \right)\) và \(R = 3\)

b) Đường tròn \({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) có tâm \(I\left( {3;1} \right)\) và \(R = \sqrt {{3^2} + {1^2} + 15}  = 5\)

17 tháng 5 2017

12 tháng 12 2018

Đáp án C

24 tháng 4 2023

\(PT\left(C\right):\left(x+1\right)^2+\left(y-7\right)^2=85\)

\(\Rightarrow\) Tâm \(I\left(-1;7\right)\) và bán kính là \(\sqrt{85}\)

PT tiếp tuyến qua \(M\left(1;-2\right)\Rightarrow x_0=1,y_0=-2\)

\(PT\) tiếp tuyến có dạng \(\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)

\(\Leftrightarrow\left(-1-1\right)\left(x-1\right)+\left(7+2\right)\left(y+2\right)=0\)

\(\Leftrightarrow-2\left(x-1\right)+9\left(y+2\right)=0\)

\(\Leftrightarrow-2x+2+9y+18=0\)

\(\Leftrightarrow-2x+9y+20=0\)