K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Đáp án A

1 tháng 8 2019

đọc lại lý thuyết rồi làm 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(y = \cos x\)

\(y\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = y\)

Suy ra hàm số \(y = \cos x\) là hàm số chẵn

Vậy ta chọn đáp án C

6 tháng 9 2021

Ta có cos2(x + π) = [-cosx]2 = cos2x

Giả sử tồn tại số T ∈ (0 ; π) thỏa mãn

cos2x = cos2(x + T) với mọi x

⇔ 2cos2x - 1 = 2cos2(x + T) - 1 với mọi x

cos2x = cos (2x + 2T) với mọi x (1)

(*) : cos2x = cos (2x + 2T)

Thay x = \(\pi\) vào ta được

1 = cos(T + 2π) ⇔ cosT = 1

Do T ∈ (0 ; π) nên cosT ≠ 1.

Vậy x = π không thỏa mãn (*) : cos2x = cos (2x + 2T)

Vậy (1) là mệnh đề sai

Dẫn đến mệnh đề "Giả sử" là sai

Nói cách khác : Không có số T ∈ (0 ; π) thỏa mãn cos2x = cos2(x + T) với mọi x

Tóm lại : T = π là số dương bé nhất thỏa mãn cos2x = cos2(x + T)

nên chu kì của hàm số này là π

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$y=f(x)=\cos ^2x=\frac{\cos 2x+1}{2}$

Hàm này có chu kỳ $T=\frac{2\pi}{|2|}=\pi$

 

 

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)

25 tháng 1 2018

+ Vẽ đồ thị hàm số y = cos x.

+ Vẽ đường thẳng Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11

+ Xác định hoành độ các giao điểm.

Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11

Ta thấy đường thẳng Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11 cắt đồ thị hàm số y = cos x tại các điểm có hoành độ

Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\cos x - \cos {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 2\,.\,\sin \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 2.\frac{{x - {x_0}}}{2}.\sin \frac{{x + {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \,\left( { - \sin \frac{{x + {x_0}}}{2}} \right) =  - \sin \frac{{2{x_0}}}{2} =  - \sin {x_0}\\ \Rightarrow f'(x) = (\cos x)' =  - \sin x\end{array}\)

NV
16 tháng 7 2021

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)