K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)

30 tháng 7 2021

a, ĐK: \(x,y\ge0\)

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+3}=x+1\)

\(\Leftrightarrow x+3=x^2+2x+1\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)

Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)

Vậy pt đã cho có nghiệm \(x=y=1\)

30 tháng 7 2021

b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)

Vậy ...

25 tháng 1 2020

\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)

Ta xét các trường hợp sau:

Trường hợp 1:

\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:

\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)

\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)

Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)

Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:

\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)

Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)

+ Nếu như:

\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)

+ Nếu như:

\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)

Trường hợp 2:

\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:

\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)

Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)

25 tháng 1 2020

Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v

3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)

\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)

Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)

\(\Leftrightarrow2b=1-\frac{1}{a}\)

Thay vào (1) ta được :

\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)

Giải pt được \(a=1\)

Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)

Ta có hệ :

\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...

2 tháng 2 2021

\(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=\left(y-1\right)\left(x-\text{4}\right)\\\left(2x+3\right)\left(2y+1\right)=\left(y-1\right)\left(4x+1\right)\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}xy+2x+2y+4=xy-4y-x+4\\4xy+2x+6y+3=4xy-4x+y-1\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}3x+6y=0\\6x+5y=-4\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=\dfrac{4}{7}\end{matrix}\right.\)(TM)

2 tháng 2 2021

\(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5x-5y-6x-9y=12\\3x+6y-4x-8y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-14y=12\\-x-2y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-\dfrac{26}{3}\\y=-\dfrac{7}{12}\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (\(-\dfrac{26}{3};-\dfrac{7}{12}\))

9 tháng 2 2020

a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy..............................................................................

b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)

Vậy...................................................................................

c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)

\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)

Vậy hệ pt vô nghiệm

d) Nhân 3 pt đầu rồi thu gọn

23 tháng 8 2018

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

23 tháng 8 2018

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !

NV
30 tháng 7 2021

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?