cho tam giác ABC ( có 3 góc nhọn, AC>AB>BC) nội tiếp (O). Vẽ các tiếp tuyến của (O) tại A,B cắt nhau tại M. Gọi H là hình chiếu vuông góc của O trên MC. Qua C kẻ đường thẳng // AB cắt MA,MB lần lượt tại E,F; HE cắt AC tại P; HF cắt BC tại Q. CMR: PQ//FE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
a: góc NED+góc NCD=180 độ
=>NEDC nội tiếp
b: ΔAHB vuôg tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC
a: Xét ΔMBA và ΔMAC có
góc MAB=góc MCA
góc M chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MC/MB=AB^2/AC^2
b: EF//AM
AM vuông góc OA
=>EF vuông góc OA
=>góc AEF+góc OAE=90 độ
=>góc AEF+(180 độ-góc AOB)/2=90 độ
=>góc AEF+90 độ-góc ACB=90 độ
=>gócAEF=góc ACB
=>góc BEF+góc BCF=180 độ
=>BEFC nội tiếp
=>góc BEC=góc BFC=90 độ
Xét ΔABC có
BF,CE là đường cao
BF căt CE tại H
=>H là trực tâm
=>AH vuông góc CB tại D
a: Xét ΔMBA và ΔMAC có
góc MAB=góc MCA
góc M chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MC/MB=AB^2/AC^2
b: EF//AM
AM vuông góc OA
=>EF vuông góc OA
=>góc AEF+góc OAE=90 độ
=>góc AEF+(180 độ-góc AOB)/2=90 độ
=>góc AEF+90 độ-góc ACB=90 độ
=>gócAEF=góc ACB
=>góc BEF+góc BCF=180 độ
=>BEFC nội tiếp
=>góc BEC=góc BFC=90 độ
Xét ΔABC có
BF,CE là đường cao
BF căt CE tại H
=>H là trực tâm
=>AH vuông góc CB tại D