K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2020

ĐKXĐ: \(x\ge1;y\ge\frac{1}{2}\)

\(x^3-y^3+\sqrt{x+y-1}-\sqrt{2y-1}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+y-1}+\sqrt{2y-1}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+\frac{1}{\sqrt{x+y-1}+\sqrt{2y-1}}\right)=0\)

\(\Leftrightarrow x=y\)

Thay xuống dưới:

\(5=x^2+\sqrt{x-1}\)

\(\Leftrightarrow x^2-4+\sqrt{x-1}-1=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\frac{x-2}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2+\frac{1}{\sqrt{x-1}+1}\right)=0\)

\(\Rightarrow x=2\Rightarrow y=2\)

4 tháng 11 2019

ĐKXĐ: ....

PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)

Dễ thấy cái ngoặc to >0. Do đó x = y.

Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)

Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

18 tháng 11 2016

Xét phương trình (1) ta có

\(2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)

\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)-\left(x+y\right)-2\left(2x-y\right)+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)

\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\sqrt{y-2x+1}-\sqrt{3-3x}\)

Đặt \(\hept{\begin{cases}\sqrt{y-2x+1}=a\left(a\ge0\right)\\\sqrt{3-3x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=x+y-2}\)thì ta có

\(PT\Leftrightarrow-a^2\left(a^2-b^2\right)=a-b\)

\(\Leftrightarrow\left(b-a\right)\left(a^3+a^2b+1\right)=0\)

Ta thấy là \(\left(a^3+a^2b+1\right)>0\)

\(\Rightarrow a=b\)

\(\Leftrightarrow y-2x+1=3-3x\)

\(\Leftrightarrow y=2-x\)

Thế vào pt (2) ta được

\(x^2-2+x-1=\sqrt{4x+2-x+5}-\sqrt{x+4-2x-2}\)

\(\Leftrightarrow x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)

Giải tiếp sẽ có được nghiệm \(\hept{\begin{cases}x=-2\\y=4\end{cases}}\)

18 tháng 11 2016

phương trình (1) tách như sau:

(x+y)(2x−y)−(x+y)−2(2x−y)+2=√y−2x+1−√3−3x⇔(x+y−2)(2x−y−1)=√y−2x+1−√3−3x↔{√y−2x+1=a(a≥0)√3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x(x+y)(2x−y)−(x+y)−2(2x−y)+2=y−2x+1−3−3x⇔(x+y−2)(2x−y−1)=y−2x+1−3−3x↔{y−2x+1=a(a≥0)3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x

thế vaò (2) là ok

k cho mình nhé xin các bạn đó cho mình 1 cái có hại gì đến các bạn đâu

8 tháng 5 2020

\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)

\(ĐK:x,y>0\)

\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\)

Vì x, y > 0 nên \(x+2y+\frac{1}{y\sqrt{x}}>0\)suy ra x - y = 0 hay x = y

Thay x = y vào (2), ta được: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)

\(\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\)

\(\Leftrightarrow\sqrt{x+3}.\sqrt{x}-\sqrt{x+3}-\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x+3}-1\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=1\left(tmđk\right)\end{cases}}\Rightarrow x=y=1\)

Vậy hệ có một nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

8 tháng 5 2020

\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{cases}}\)

ĐK: \(\hept{\begin{cases}x>0\\y>0\end{cases}}\)và \(\hept{\begin{cases}x+3\ge0\\x^2+3x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\y>0\end{cases}}}\)

\(\left(1\right)\Leftrightarrow\frac{y-x}{y\sqrt{x}}=\left(x-y\right)\left(x+2y\right)\Leftrightarrow\left(x+y\right)\left(x+2y+\frac{1}{y\sqrt{x}}\right)=0\Leftrightarrow x=y\)do \(x+2y+\frac{1}{y\sqrt{x}}>0\forall x,y>0\)

Thay y=x vào pt (2) ta được

\(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\Leftrightarrow1+\sqrt{x^2+3x}=\frac{3}{\sqrt{x+3}-\sqrt{x}}\)

\(\Leftrightarrow1+\sqrt{x^2+3x}=\sqrt{x+3}+\sqrt{x}\Leftrightarrow\sqrt{x+3}\cdot\sqrt{x}-\sqrt{x+3}-\sqrt{x+1}=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=1\\\sqrt{x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\left(loai\right)\\x=1\left(tm\right)\end{cases}\Rightarrow}x=y=1}\)

Vậy hệ có nghiệm duy nhất (x;y)=(1;1)

18 tháng 1 2020

\(\hept{\begin{cases}\sqrt{x-1}+\sqrt{y-1}=3\left(1\right)\\xy+x+y=x^2-2y^2\left(2\right)\end{cases}}\)

(ĐK : x,y \(\ge\)1)

Biến đổi pt (2) ta được :

xy + x + y = x2 - 2y2

<=>2y2 + xy + y =x2 - x 

biến đổi vế phải ta có : \(\Delta=b^2-4ac=1\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{b-\sqrt{\Delta}}{2}=y\\\frac{b+\sqrt{\Delta}}{2}=y\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\left(loại\right)\\y=1\end{cases}}\)

thế y = 1 vào pt (1) ta được : 

\(\sqrt{x-1}+\sqrt{1-1}=3\Leftrightarrow x-1=3\Leftrightarrow x=10\)

vậy pt có cặp nghiệm (x,y) là ( 10,1 ) 

* cái dạng này có trong đề thi hsg toán 10 nha , lên cấp 2 nhiều dạng này á :3 *

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

5 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)

\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)

cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ

suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý

vậy pt vô nghiệm