Giúp e với ạ. E cám ơn nhìu ạ
Giải pt 5x^4 -2x^2 -3x^2*√(x^2+2) = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-6x+15\)
\(A=x^2+6x+9+6\)
\(A=\left(x+3\right)^2+6\ge6\)
vậy Min A=6\(\Leftrightarrow\)x=-3
b) Min B=4x
c) \(C=2x^2-6x+4\)
d) \(D=x^2+x+1\)
\(=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
vậy Min D\(=\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)
Ta có : A = x2 - 6x + 15
=> A = x2 - 2.x.3 + 9 + 6
=> A = x2 - 2.x.3 + 32 + 6
=> A = (x - 3)2 + 6
Mà : (x - 3)2 \(\ge0\forall x\in R\)
Nên : (x - 3)2 + 6 \(\ge6\forall x\in R\)
Vậy GTNN của A là 6 khi x = 3
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/giai-pt-sqrtx-2sqrt4-x2x2-5x-1.219493072549
Vây \(S=\left\{x|x< \dfrac{15}{7}\right\}\)
lớp 8 chx hc kí hiệu đó anh ạ
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
cái này áp dụng hệ thức lượng thôi bạn
AH=căn 6^2-4,8^2=3,6cm
=>AC=6^2/3,6=10cm
\(5x^4-2x^2-3x^2\sqrt{x^2+2}=4\)
Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)
\(5\left(t^2-2\right)^2-2\left(t^2-2\right)-3t\left(t^2-2\right)-4=0\)
\(\Leftrightarrow5t^4-3t^3-22t^2+6t+20=0\)
Nhận thấy \(t=0\) không phải nghiệm, chia 2 vế cho \(t^2\)
\(\Rightarrow5\left(t^2+\frac{4}{t^2}\right)-3\left(t-\frac{2}{t}\right)-22=0\)
Đặt \(t-\frac{2}{t}=a\Rightarrow t^2+\frac{4}{t^2}=a^2+4\)
\(\Rightarrow5\left(a^2+4\right)-3a-22=0\Leftrightarrow5a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{2}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t-\frac{2}{t}=1\\t-\frac{2}{t}=-\frac{2}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t^2-t-2=0\\t^2+\frac{2}{5}t-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\\t=\frac{\sqrt{51}-1}{5}\\t=\frac{-\sqrt{51}-1}{5}\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=2\\\sqrt{x^2+2}=\frac{\sqrt{51}-1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=\frac{2-2\sqrt{51}}{25}< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=\pm\sqrt{2}\)