K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\widehat{ADB}\) là góc ngoài tại đỉnh D của ΔDBC(DA và DC là hai tia đối nhau)

nên \(\widehat{ADB}=\widehat{DBC}+\widehat{C}\)(định lí góc ngoài của tam giác)

hay \(\widehat{C}=\widehat{ADB}-\widehat{DBC}\)

hay \(\widehat{C}=\widehat{MDB}-\widehat{DBC}\)(1)

Ta có: Đường trung trực của BD cắt AC tại M(gt)

⇔M nằm trên đường trung trực của BD

⇔MB=MD(tính chất đường trung trực của một đoạn thẳng)

Xét ΔMBD có MB=MD(cmt)

nên ΔMBD cân tại M(định nghĩa tam giác cân)

\(\widehat{MBD}=\widehat{MDB}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{C}=\widehat{MBD}-\widehat{ABD}\)(3)

Ta có: \(\widehat{ABD}+\widehat{MBA}=\widehat{MBD}\)(tia BA nằm giữa hai tia BD và BM)

hay \(\widehat{MBA}=\widehat{MBD}-\widehat{ABD}\)(4)

Từ (3) và (4) suy ra \(\widehat{C}=\widehat{MBA}\)

Xét ΔMAB và ΔMBC có

\(\widehat{MBA}=\widehat{MCB}\)(cmt)

\(\widehat{AMB}\) chung

Do đó: ΔMAB∼ΔMBC(g-g)

22 tháng 4 2022

giup mik với mai thi hk2 r ,mà mình chx giải ra bài này để ôn

Các nhân tài toán học cứu giúp

22 tháng 4 2022

xét tam giac ABD và tam giác KBD có

^BAD=^BKD(BAvuông AC,DK vuông DC)

^ABD=^KBD(BDlà phân giác ^B)

BD chung

Suy ratam giac ABD = tam giác KBD(cạnh góc vuông ,góc nhọn kề)

 

21 tháng 4 2022

Đề bạn bị sai và thiếu, mong bạn kiểm tra lại.

16 tháng 12 2023

a: ta có: BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

Ta có: CH\(\perp\)AB

BK\(\perp\)BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Ta có: BHCKlà hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

14 tháng 12 2023

a, Ta có:

- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.

- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.

- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.

 

b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.

- Vì M là trung điểm của BC, nên BM = MC.

- Ta có BHCK là hình bình hành, nên BH = CK.

- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.

- Từ đó, ta có BM = MC = HM = KM.

- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.

 

Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.

a: Xét ΔOAD và ΔOMK có

\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)

\(\widehat{AOD}=\widehat{MOK}\)

Do đó: ΔOAD đồng dạng với ΔOMK

=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)

=>\(OA\cdot OK=OM\cdot OD\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)

=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)

mà BD+CD=BC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)

=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)

c: ME//AD

=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)

KM//AD

=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)

AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)

=>AE=AK

Xét ΔCAD có EM//AD

nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)

=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)

mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)

nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)

=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)

=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)