K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 7 2020

Do \(A\left(a;b\right)\in d\Rightarrow3a-2b-1=0\)

\(\Leftrightarrow3a-2b=1\)

\(\Rightarrow1=\left(3a-2b\right)^2\le\left(9+4\right)\left(a^2+b^2\right)\)

\(\Rightarrow a^2+b^2\ge\frac{1}{13}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3a-2b=1\\\frac{a}{3}=\frac{b}{-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{13}\\b=-\frac{2}{13}\end{matrix}\right.\)

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
20 tháng 1 2022

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=3\)

a. \(\overrightarrow{IM}=\left(0;2\right)\Rightarrow IM=\sqrt{0^2+2^2}=2< R\Rightarrow\) M nằm trong đường tròn

b. \(d\left(I;d\right)=\dfrac{\left|2-\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\sqrt{2}< 3\Rightarrow d\) cắt đường tròn tại 2 điểm

c. Khoảng cách giữa 2 điểm trên đường tròn là lớn nhất khi chúng nằm ở 2 mút đường kính

\(\Rightarrow\) d' đi qua tâm I

Do d' vuông góc d nên nhận (1;1) là 1 vtpt

Phương trình: \(1\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow x+y-1=0\)

7 tháng 8 2019

Đáp án C

Đường tròn (C) có tâm  I( -1 ; 3) và bán kính R= 2

Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.

Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).

Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0

=> c = 15

Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.