Giai pt
\(x^2-4x+21=6\sqrt{2x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét VT
ĐKXĐ \(-1\le x\le3\)
\(XH:\left(-x^2+4x+12\right)-\left(-x^2+2x+3\right)=2x+9\ge0\)
VT^2 = \(-x^2+4x+12-x^2+2x+3+2\sqrt{\left(-x^2+4x+12\right)\left(-x^2+2x+3\right)}\)
<=> \(VT^2=-2x^2+6x+15+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}\)
= \(\left(x+2\right)\left(3-x\right)+\left(6-x\right)\left(x+1\right)+2\sqrt{\left(x+2\right)\left(3-x\right)\left(6-x\right)\left(x+1\right)}+3\)
= \(\left(\sqrt{\left(x+2\right)\left(3-x\right)}+\sqrt{\left(6-x\right)\left(x+1\right)}\right)^2+3\ge3\)
=> VT \(\ge\sqrt{3}\) dấu '=' xảy khi \(\sqrt{\left(x+2\right)\left(3-x\right)}=\sqrt{\left(6-x\right)\left(x+1\right)}\)
<=> \(-x^2+x+6=-x^2+5x+6\Rightarrow x=0\)
VP = \(\sqrt{3}-x^2\le\sqrt{3}\)
dấu '=' xảy ra khi tai x = 0
Vậy VP = VT = căn 3 tại x = 0
Đệ biết là có người làm câu c,d nên xin xí câu e :3
ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)
\(\Rightarrow x=3\left(tm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)
\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)
\(\Leftrightarrow x^3-18x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)
Đề bài \(ĐK\left(x\ge-\frac{3}{2}\right)\)
\(=>\left(x-3\right)^2+\left(\sqrt{2x+3}-3\right)^2=0\)
mà \(\left(x-3\right)^2+\left(\sqrt{2x+3}-3\right)^2\ge0\)
dấu = xảy ra khi x=3 (chọn )
zậy...
:V cách khác
Ta có:
\(x^2-4x+21=6\sqrt{2x+3}\left(x\ge-\frac{3}{2}\right)\)
\(\Leftrightarrow x^2-4x+21-18=6\left(\sqrt{2x+3}-3\right)\)
\(\Leftrightarrow x^2-4x+3=6\cdot\frac{2x-6}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)-\frac{12\left(x-3\right)}{\sqrt{2x+3}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left[x-1-\frac{12}{\sqrt{2x+3}+3}\right]=0\)
:V