K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

Tìm điểm rơi: ( a; b ; c ) = ( -3; 3; 0 ) hoặc ( 3; -3 ; 0 ) 

Xét: 2P + 3.18 \(\ge\) 2( 3ab + bc + ca ) + 3(a^2 + b^2 + c^2)  = ( a+ b + c)^2 + 2(a+b)^2 + 2c^2\(\ge\)0 đúng

( nháp = k ( a+ b + c)^2 + m ( a + b)^2 + n c^2 

k + m = 3

n +k = 3

2k + 2m = 6   <=> k = 1; m = 2; n = 2

2k = 2 ) 

Do đó: 2P \(\ge\)-3.18 

=> P \(\ge\)-27

Dấu "=" xảy ra <=> a = - b ; c = 0 ; a^2 + b^2 + c^2 = 18 <=> a = 3; b = - 3; c = 0 hoặc a = -3; b = 3 và c = 0

18 tháng 1 2018

(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)

suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2

Mà a+b+c= 0(gt)

suy ra: 0^2 x 2=0^4 x 2

0 = 0

=)))

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}=\frac{(\frac{3}{2})^2}{3}=\frac{3}{4}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$.

 

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

2 tháng 8 2017

lam giong nhu khuyen hoang nhung me bao lo

(a+2)2 = 0,2

(b-3)4= 2

(5-c)6=0

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$

Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

NV
14 tháng 1

Hiển nhiên \(a;b;c\ne0\)

Đặt \(a^2-ab=b^2-bc-c^2-ca=k\ne0\) (do a;b;c phân biệt và khác 0)

\(\Rightarrow\left\{{}\begin{matrix}a-b=\dfrac{k}{a}\\b-c=\dfrac{k}{b}\\c-a=\dfrac{k}{a}\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)

\(\Rightarrow0=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)

\(\Rightarrow k\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{0}{k}=0\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Lời giải:

Do $a\geq 4, b\geq 5, c\geq 6$

$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$

$\Rightarrow c\leq 7$

$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$

$\Rightarrow a< 9$

$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$

$\Rightarrow b< 8$

Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$

Suy ra:

$(a-4)(a-9)\leq 0$

$(b-5)(b-8)\leq 0$

$(c-6)(c-7)\leq 0$

$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$

$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$

$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$

28 tháng 12 2017

Đặt dãy tỉ số = k => a = 2014k , b = 2015k , c = 2016k Thay a,b,c vào đẳng thức dưới => ĐPCM 

28 tháng 12 2017

Nhớ mặt từ sau đừng bảo tui giải cho

NV
24 tháng 4 2021

- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)

- Nếu \(abc< 0\Rightarrow\)  trong 3 số a; b; c có ít nhất 1 số âm

Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)

Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)

\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)

Vậy \(a=b=c=0\)