10 VĐV tham gia chơi tennis, cứ 2 người trong số họ chỉ chơi đúng 1 ván. Người thứ 1 thắng (\(x_1\)) 1 ván và thua (\(y_1\)) 1 ván... Người thứ 10 thắng (\(x_{10}\)) 10 ván và thua (\(y_{10}\)) 10 ván.
Cm: \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+...+y_{10}^2\)
Bổ sung thêm dữ kiện: Không có trận đấu tennis hòa
Một người đều chơi 9 trận với 9 người khác và không có trận hòa
Do đó \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)
Mà tổng số trận thắng bằng tổng số trận thua, do đó: \(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)
Ta có \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+....+y_{10}^2\right)\)
\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+....+\left(x_{10}^2-y_{10}^2\right)=9\left(x_1-y_1\right)+9\left(x_1-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)
\(=9\left(x_1-y_1+x_2-y_2+...+x_{10}-y_{10}\right)=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+..+y_{10}\right)\right]=0\)
Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)