K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 6 2020

\(2sin\left(x+4\pi\right)=\frac{2m-1}{2}\)

\(\Rightarrow-1\le\frac{2m-1}{2}\le1\Rightarrow\frac{-1}{2}\le m\le\frac{3}{2}\)

\(sin\left(7-x\right)=5m+6m^2\)

\(\Rightarrow\left\{{}\begin{matrix}6m^2+5m\ge-1\\6m^2+5m\le1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6m^2+5m+1\ge0\\6m^2+5m-1\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge-\frac{1}{3}\\m\le-\frac{1}{2}\end{matrix}\right.\\-1\le m\le\frac{1}{6}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le m\le-\frac{1}{2}\\-\frac{1}{3}\le m\le\frac{1}{6}\end{matrix}\right.\)

2*sin x=2m+3

=>sin x=m+3/2

\(x\in\left[0;pi\right]\)

=>sin x thuộc [0;1]

=>0<=m+3/2<=1

=>-3/2<=m<=-1/2

30 tháng 7 2021

undefined

undefined

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

22 tháng 8 2023

`a)sin x =4/3`

`=>` Ptr vô nghiệm vì `-1 <= sin x <= 1`

`b)sin 2x=-1/2`

`<=>[(2x=-\pi/6+k2\pi),(2x=[7\pi]/6+k2\pi):}`

`<=>[(x=-\pi/12+k\pi),(x=[7\pi]/12+k\pi):}`    `(k in ZZ)`

`c)sin(x - \pi/7)=sin` `[2\pi]/7`

`<=>[(x-\pi/7=[2\pi]/7+k2\pi),(x-\pi/7=[5\pi]/7+k2\pi):}`

`<=>[(x=[3\pi]/7+k2\pi),(x=[6\pi]/7+k2\pi):}`     `(k in ZZ)`

`d)2sin (x+pi/4)=-\sqrt{3}`

`<=>sin(x+\pi/4)=-\sqrt{3}/2`

`<=>[(x+\pi/4=-\pi/3+k2\pi),(x+\pi/4=[4\pi]/3+k2\pi):}`

`<=>[(x=-[7\pi]/12+k2\pi),(x=[13\pi]/12+k2\pi):}`    `(k in ZZ)`

a: sin x=4/3

mà -1<=sinx<=1

nên \(x\in\varnothing\)

b: sin 2x=-1/2

=>2x=-pi/6+k2pi hoặc 2x=7/6pi+k2pi

=>x=-1/12pi+kpi và x=7/12pi+kpi

c: \(sin\left(x-\dfrac{pi}{7}\right)=sin\left(\dfrac{2}{7}pi\right)\)

=>x-pi/7=2/7pi+k2pi hoặc x-pi/7=6/7pi+k2pi

=>x=3/7pi+k2pi và x=pi+k2pi

d: 2*sin(x+pi/4)=-căn 3

=>\(sin\left(x+\dfrac{pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

=>x+pi/4=-pi/3+k2pi hoặc x-pi/4=4/3pi+k2pi

=>x=-7/12pi+k2pi hoặc x=19/12pi+k2pi

3 tháng 6 2021

 a, \(x^2-\left(2m+1\right)x+m^2+5m=0\)

Với m=2 

\(x^2-\left[2.\left(-2\right)+1\right]x+\left(-2\right)^2+5.\left(-2\right)=0\)

\(x^2+3x-6=0\)

\(\Delta=3^2-4.1.\left(-6\right)\)

     \(=9+24\)

\(=33>0\Rightarrow\sqrt{\Delta}=\sqrt{33}\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-3+\sqrt{33}}{2}\)

\(x_2=\dfrac{-3-\sqrt{33}}{2}\)

Vậy khi m=-2 thì phương trình có nghiệm là \(x_1=\dfrac{-3+\sqrt{33}}{2};x_2=\dfrac{-3-\sqrt{33}}{2}\)

b,Ta có \(\Delta=\left[-\left(2m+1\right)\right]^2-4\left(m^2+5m\right)\)

                 \(=4m^2+4m+1-4m^2-20m\)

                 \(=1-16m\)

Phương trình có 2 nghiệm\(\Leftrightarrow\Delta\ge0\)

                                          \(\Leftrightarrow1-16m\ge0\)

                                          \(\Leftrightarrow m\le\dfrac{1}{16}\)

Khi đó hệ thức viet ta có tích các nghiệm là\(m^2+5m\)

Mà tích các nghiệm bằng 6, do đó \(m^2+5m=6\)

                                                   \(\Leftrightarrow m^2+5m-6=0\)

Ta thấy \(a+b+c=1+5+\left(-6\right)=0\) nên \(m_1=1;m_2=-6\)

Đối chiếu với điều kiện \(m\le\dfrac{1}{16}\) thì \(m=-6\) là giá trị cần tìm

-Chúc bạn học tốt-

NV
2 tháng 6 2019

Đặt \(sinx=a\) (\(-1\le a\le1\) ) \(\Rightarrow2a^2-\left(5m+1\right)a+2m^2+2m=0\) (1)

Để pt đã cho có đúng 5 nghiệm thuộc \(\left(-\frac{\pi}{2};3\pi\right)\) ta có 2 trường hợp sau:

TH1: \(\left\{{}\begin{matrix}a_1=1\\-1< a_2\le0\end{matrix}\right.\)

\(\Rightarrow2-5m-1+2m^2+2m=0\Leftrightarrow2m^2-3m+1=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\Rightarrow a_2=\frac{2m^2+2m}{2}=2\left(l\right)\\m=\frac{1}{2}\Rightarrow a_2=\frac{3}{4}\left(l\right)\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a_1=-1\\0< a_2< 1\end{matrix}\right.\)

\(\Rightarrow2+5m+1+2m^2+2m=0\Rightarrow2m^2+7m+3=0\)

\(\Rightarrow\left[{}\begin{matrix}m=-3\Rightarrow a_2=-6\left(l\right)\\m=-\frac{1}{2}\Rightarrow a_2=\frac{1}{4}\end{matrix}\right.\)

Vậy \(m=-\frac{1}{2}\)

8 tháng 9 2019

còn th a=0

NV
16 tháng 9 2021

Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):

- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm

- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm

- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm

Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:

\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:

- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)

- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)

- TH3:  \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)

Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được

17 tháng 9 2021

Em làm cách khác cơ.

Δ = (...)2 nên viết hẳn 2 nghiệm ra

rồi vẽ bảng biến thiên của y = sinx