Tính giá trị của biểu thức sau:A=\(\frac{1\cdot111+2\cdot110+1\cdot109+...+111\cdot1}{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+111\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(-5\right)^{-1}=-\dfrac{1}{5}\)
b) \(2^0\cdot\left(\dfrac{1}{2}\right)^{-5}=1\cdot32=32\)
c) \(6^{-2}\cdot\left(\dfrac{1}{3}\right)^{-3}:2^{-2}\)
\(=\dfrac{1}{36}\cdot27:\dfrac{1}{4}\)
\(=\dfrac{27\cdot4}{36}=3\)
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
mk ko bít làm bn ak?
nếu muốn bn đợi mk 2 năm nữa
123456
ta có :
1 đến 100 =
có 100 số hạng
tổng : ( 100 + 1 ) x 100 : 2 = 5050
công thức : ta lấy số lớn nhất trừ số bé nhất trong dãy số trong ngoặc chia số số hạng rồi chia 2
12 + 22 + 32 ........ + 102 =
12 = 1 x 1 = 1 62 = 6 x 6 = 36
22 = 2 x 2 = 4 72 = 7 x 7 = 49
32 = 3 x 3 = 9 .......
42 = 4 x 4 = 16 tổng dãy số là : 1 + 9 + 4 + 16 + 25 + 36 .... = 395
52 = 5 x 5 = 25
65 x 111 x 13 x 15 x 37 = 52056225
Đ/s : ta lấy 3 kết quả nhân với nhau rồi xem có thể xử dụng lũy thừa để rút gọn hay không
a)
\(\begin{array}{l}\left( {0,25 - \frac{5}{6}} \right).1,6 + \frac{{ - 1}}{3}\\ =(\frac{25}{100}-\frac{5}{6}).\frac{16}{10}+\frac{-1}{3}\\= \left( {\frac{1}{4} - \frac{5}{6}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \left( {\frac{6}{{24}} - \frac{{20}}{{24}}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{24}}.\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 5}}{{15}}\\ = \frac{{ - 19}}{{15}}\end{array}\)
b)
\(\begin{array}{l}3 - 2.\left[ {0,5 + \left( {0,25 - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left[ {\frac{1}{2} + \left( {\frac{1}{4} - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left( {\frac{1}{2} + \frac{1}{{12}}} \right)\\ =3-2.(\frac{6}{12}+\frac{1}{12})\\= 3 - 2.\frac{7}{{12}}\\ = 3 - \frac{7}{6}\\=\frac{18}{6}-\frac{7}{6}\\ = \frac{{11}}{6}\end{array}\)
Ta có:\(f\left(x\right)-1=\left(x-1\right)^3\)
\(=>A+\frac{1}{2}=\left(\frac{1}{112}-1\right)^3+\left(\frac{2}{112}-1\right)^3+\left(\frac{3}{112}-1\right)^3+...\left(\frac{111}{112}-1\right)^3\)
\(A+\frac{1}{2}=-\frac{1^3+2^3+3^3+...+111^3}{112^3}=-\frac{\frac{111^2\left(111+1\right)^2}{4}}{112^3}=-\frac{111^2}{4\cdot112}=-\frac{12321}{448}\)
\(A=-\frac{12321}{448}-\frac{1}{2}=-\frac{12545}{448}\)
a) \(0,2 + 2,5:\frac{7}{2} = \frac{2}{{10}} + \frac{25}{10}:\frac{7}{2} = \frac{1}{5} + \frac{25}{10}.\frac{2}{7} \\= \frac{1}{5} + \frac{5}{7} = \frac{7}{{35}} + \frac{{25}}{{35}} = \frac{{32}}{{35}}\)
b)
\(\begin{array}{l}9.{\left( {\frac{{ - 1}}{3}} \right)^2} - {\left( { - 0,1} \right)^3}:\frac{2}{{15}}\\ = 9.\frac{1}{9} - {\left( {\frac{{ - 1}}{{10}}} \right)^3}:\frac{2}{{15}}\\ = 1 - \frac{{ - 1}}{{1000}}:\frac{2}{{15}}\\ = 1 - \frac{{ - 1}}{{1000}}.\frac{{15}}{2}\\ = 1 + \frac{3}{{400}}\\=\frac{400}{400}+\frac{3}{400}\\ = \frac{{403}}{{400}}\end{array}\)
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)
\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)