K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

okey :v

\(n^4+2n^3+5n^2\text{ là bình phương của 1 số}\Leftrightarrow n^2\left(n^2+2n+5\right)\text{ là bình phương của 1 số}\)

mà n nguyên do đó:

\(n^2+2n+5\text{ là bình phương của 1 số nguyên}\Rightarrow\left(n+1\right)^2+4=k^2\left(k\text{ nguyên}\right)\)

đến đây ez

19 tháng 11 2019

a) Học sinh tự làm

b) 2 n + 1 n + 1 ( n ≠ − 1 ) có giá trị là số nguyên khi (2n +1) ⋮  (n +1) hay [2(n +1) -1] ⋮  (n +1)

Từ đó suy ra 1 ⋮  (n +1)

Do đó n {- 2;0).

4 tháng 8 2018

B) n+5/n+3

Ta có:

(n+5) - (n+3) chia hết cho n+3

=>(n-n) + (5-3) chia hết cho n+3

=> 2 chia hết cho n+3

=> n+3 là Ư(2)={1 ; 2 ; -1 ; -2}

Ta có:

*)n+3= 1                         

n=1-3

n= -2

*)n+3=2

n= 2 - 3

n= -1

*)n+3= -1

n= -1-3

n= -4

*)n+3= -2

n= -2 - 3

n= -5

Để tớ gửi từ từ từng câu 1 nhé

4 tháng 8 2018

Bài tớ tự nghĩ thôi nên ko chắc là làm đúng đâu bạn nhé

16 tháng 4 2017

THÊM LÀ BÌNH PHƯƠNG CỦA 1 SỐ

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:

Ta có $n^4+2n^3+5n^2=n^2(n^2+2n+5)$.

Để biểu thức trên là bình phương của một số nguyên thì $n^2+2n+5$ phải là bình phương của một số nguyên.

Đặt $n^2+2n+5=a^2$ với $a\in\mathbb{Z}$

$\Leftrightarrow (n+1)^2+4=a^2$

$\Leftrightarrow 4=a^2-(n+1)^2=(a-n-1)(a+n+1)$

Vì $a-n-1-(a+n+1)=-2(n+1)$ chẵn nên $a-n-1,a+n+1$ có cùng tính chẵn lẻ.

Do đó $(a-n-1,a+n+1)=(2,2); (-2,-2)$

Nếu $(a-n-1,a+n+1)=(2,2)\Rightarrow 2(n+1)=0\Rightarrow n=-1$

Nếu $(a-n-1,a+n+1)=(-2,-2)\Rightarrow 2(n+1)=0\Rightarrow n=-1$

Tóm lại $n=-1$