Xác định đa thức bậc nhất \(P\left(x\right)=ax+b\) biết rằng P(-1)=5 và P(-2)=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P\left(-1\right)=-a+b=5\Rightarrow b=a+5\) (1)
\(P\left(-2\right)=-2a+b=7\Rightarrow b=2a+7\) (2)
Từ (1) có: \(2a+7=a+5\Rightarrow a=-2\Rightarrow b=3\)
Vậy ta có: \(P\left(x\right)=-2x+3\)
Lời giải:
Ta có:
\(P(-1)=a(-1)+b=-a+b=5\Rightarrow b=5+a\)
\(P(-2)=a(-2)+b=-2a+b=7\)
Thay $b=5+a$ ta có: $-2a+5+a=7$
$\Rightarrow a=-2\Rightarrow b=3$
Vậy đa thức cần tìm là $P(x)=-2x+3$
a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2
= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12
b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x
Vậy đa thức A(x) không có nghiệm.
c) Tìm được P(x) = -2x + 3
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
a: Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
=2x^2+5x-12+x^2-8x-1
=3x^2-3x-13
Ta có \(\left\{{}\begin{matrix}f\left(0\right)=5\\f\left(-1\right)=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=5\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=5\\a=3\end{matrix}\right.\)
Vậy hàm số \(y=ax+b=3x+5\)
Ta có: f(0)=5
nên b=5
hay y=ax+5
Thay x=-1 và y=2 vào y=ax+5, ta được:
\(-a+5=2\)
hay a=3
Lời giải:
$P(-1)=a(-1)+b=-a+b=5\Rightarrow b=a+5$
$P(-2)=a(-2)+b=-2a+b=7$
Thay $b=a+5$ ta có: $-2a+a+5=7$
$\Leftrightarrow a=-2$
$\Rightarrow b=-2+5=3$
Vậy đa thức $P(x)=-2x+3$